Abstract:
A semiconductor device with temperature control system. Embodiments of the device may include a MEMS chip including a first heater with a dedicated first temperature control loop and a CMOS chip including a second heater with a dedicated second temperature control loop. Each control loop may have a dedicated temperature sensor for controlling the thermal output of each heater. The first heater and sensor are disposed proximate to a MEMS device in the MEMS chip for direct heating thereof. The temperature of the MEMS chip and CMOS chip are independently controllable of each other via the temperature control loops.
Abstract:
A vacuum sensor for sensing vacuum in a sealed enclosure is provided. The sealed enclosure includes active MEMS devices desired to be maintained in vacuum conditions. The vacuum sensor includes a motion beam anchored to an internal surface in the sealed enclosure. A driving electrode is disposed beneath the motion beam and a bias is supplied to cause the motion beam to deflect through electromotive force. A sensing electrode is also provided and detects capacitance between the sensing electrode disposed on the internal surface, and the motion beam. Capacitance changes as the gap between the motion beam and the sensing electrode changes. The amount of deflection is determined by the vacuum level in the sealed enclosure. The vacuum level in the sealed enclosure is thereby sensed by the sensing electrode.
Abstract:
A system and method for modeling microelectromechanical devices is disclosed. An embodiment includes separating the microelectromechanical design into separate regions and modeling the separate regions separately. Parametric parameters or parametric equations may be utilized in the separate models. The separate models may be integrated into a MEMS device model. The MEMS device model may be tested and calibrated, and then may be used to model new designs for microelectromechanical devices.
Abstract:
A system and method for modeling microelectromechanical devices is disclosed. An embodiment includes separating the microelectromechanical design into separate regions and modeling the separate regions separately. Parametric parameters or parametric equations may be utilized in the separate models. The separate models may be integrated into a MEMS device model. The MEMS device model may be tested and calibrated, and then may be used to model new designs for microelectromechanical devices.
Abstract:
Described herein are semiconductor device packages with EMI shielding and related methods. In one embodiment, a semiconductor device package includes: (1) a substrate unit; (2) a grounding element disposed adjacent to a periphery of the substrate unit and extending upwardly from an upper surface of the substrate unit; (3) a semiconductor device disposed adjacent to the upper surface; (4) a package body disposed adjacent to the upper surface and covering the semiconductor device and the grounding element; and (5) an EMI shield disposed adjacent to exterior surfaces of the package body and electrically connected to a lateral surface of the grounding element. A lateral surface of the package body is substantially aligned with a lateral surface of the substrate unit. The grounding element corresponds to a remnant of a conductive bump, and provides an electrical pathway to ground electromagnetic emissions incident upon the EMI shield.
Abstract:
Described herein are semiconductor device packages with EMI shielding and related methods. In one embodiment, a semiconductor device package includes: (1) a substrate unit; (2) a grounding element disposed adjacent to a periphery of the substrate unit and extending upwardly from an upper surface of the substrate unit; (3) a semiconductor device disposed adjacent to the upper surface; (4) a package body disposed adjacent to the upper surface and covering the semiconductor device and the grounding element; and (5) an EMI shield disposed adjacent to exterior surfaces of the package body and electrically connected to a lateral surface of the grounding element. A lateral surface of the package body is substantially aligned with a lateral surface of the substrate unit. The grounding element corresponds to a remnant of a conductive bump, and provides an electrical pathway to ground electromagnetic emissions incident upon the EMI shield.
Abstract:
The present invention offers an over-sampling digital-to-analog converter with variable sampling frequencies to process input signals of variable sampling frequencies. The over-sampling digital-to-analog converter comprises an expander, which expands said input signals with a fixed rate of M to produce over-sampling signals; a digital low-pass filter, which filters out high-frequency ingredients of over-sampling signals and then outputs data with a first rate; a data buffer, which receives the outputted data by said digital low-pass filter with the first rate and outputs the data with a second rate; a modulator, which reads data in said data buffer with the second rate and modulates the data; a digital-to-analog converter, which converts the modulated data to analog signals; and an analog low-pass filter, which filters out high-frequency ingredients of said analog signals for producing output signals. No matter how the sampling frequency of the input signals is, due to reading rates of the modulator are the same, the over-sampling digital-to-analog converter ensures that noise is mostly distributed in the high-frequency band.
Abstract:
A method for converting a multi-bit digital value to an analog value. The method includes, in a first conversion cycle, converting a first set of digital bits to a first analog voltage using passive charge-sharing. The method also includes, in a second conversion cycle, converting a second set of digital bits to a second analog voltage added to the first analog voltage using active charge-sharing. The first set of digital bits and the second set of digital bits are different bits of the multi-bit digital value.
Abstract:
Some embodiments of the present disclosure relate to a stacked integrated chip structure having a thermal sensor that detects a temperature of one or a plurality of integrated chips. In some embodiments, the stacked integrated chip structure has a main integrated chip and a secondary integrated chip located on an interposer wafer. The main integrated chip has a reference voltage source that generates a bias current. The secondary integrated chip has a second thermal diode that receives the bias current and based thereupon generates a second thermal sensed voltage and a second reference voltage that is proportional to a temperature of the secondary integrated chip. A digital thermal sensor within the main integrated chip determines a temperature of the secondary integrated chip based upon as comparison of the second thermal sensed voltage and the reference voltage.
Abstract:
A thermal sensing system includes a circuit having a layout including standard cells arranged in rows and columns. First and second current sources provide first and second currents, respectively. The thermal sensing system includes thermal sensing units, first and second switching modules, and an analog to digital converter (ADC). Each thermal sensing unit is configured to provide a voltage drop dependent on a temperature at that thermal sensing unit. The first switching module is configured to select one of the thermal sensing units. The second switching module includes at least one switch controllable by a control signal. The at least one switch is configured to selectively couple the thermal sensing units, based on the control signal, to one of the first and second current sources, via the first switching module. The ADC is configured to convert an analog voltage, provided by the selected thermal sensing unit, to a digital value.