摘要:
A photocatalyst layer (TiO2) is formed on the surface of a substrate (glass plate) through the intermediary of a monoclinic undercoat layer (ZrO2), and no dead layer is substantially present between the photocatalyst layer and the undercoat layer. Also, by providing a peel preventing layer between the substrate and the undercoat layer, it is possible to eliminate film peeling between the photocatalyst layer and the substrate, defects and discoloration. In the above-described TiO2 layer, metal such as tin (Sn), zinc (Zn), molybdenum (Mo) or iron (Fe) is doped. The phrase “no dead layer is substantially present” means that the thickness of the dead layer is 20 nm or less. The thickness of the photocatalyst layer is preferably from 1 nm to 1,000 nm, more preferably from 1 nm to 500 nm.
摘要:
A photocatalyst layer (TiO2) is formed on the surface of a substrate (glass plate) through the intermediary of a monoclinic undercoat layer (ZrO2), and no dead layer is substantially present between the photocatalyst layer and the undercoat layer. Also, by providing a peel preventing layer between the substrate and the undercoat layer, it is possible to eliminate film peeling between the photocatalyst layer and the substrate, defects and discoloration. A metal element may be doped in the photocatalyst layer, and it is preferable that the metal element is at least one of Sn, Zn, Mo and Fe. The phrase “no dead layer is substantially present” means that the thickness of the dead layer is 20 nm or less. The thickness of the photocatalyst layer is preferably from 1 nm to 1,000 nm, more preferably from 1 nm to 500 nm.
摘要:
This invention relates to an article having a substrate with a photocatalyst coating film formed thereon by ae sputtering method, characterized in that the photocatalyst coating film comprises titanium oxide as a main component and at least one kind of metal having a sputtering rate for Ar being 0.9 to 2.7 times that of Ti, preferably at least one kind of metal selected from the group consisting of Fe, V, Mo, Nb, Al and Cr, in an amount of 0.01 to 10 wt % in terms of the sum of such metals. The coating film is formed by a method using a Ti metal sputtering target or a Ti sub-oxide sputtering target containing the metal in an amount of 0.01 to 10 wt % in terms of the sum of such metals, or a method using two kinds of targets for two sputtering cathodes and applying reversing potential so as to have a cathode and an anode alternately.
摘要:
A method for forming a zirconium compound film on a substrate by a sputtering process using a zirconium target which contains a metal (such as tin or zinc) of which the sputtering yield in an argon atmosphere is more than twice that of zirconium in place of a conventional metallic zirconium target. An article coated with the zirconium compound film and a sputtering target used for coating the film are provided. It is desirable that the content of the metal be 1-45 at %, but a third metal can be added thereto.
摘要:
The sheet resistance of titanium oxide film can be controlled in 109 to 1013 &OHgr;/□ by coating a titanium oxide film on a substrate by sputtering a target containing metallic titanium under an atmosphere at reduced pressure and then subjecting the film to heat treatment under and oxidizing, inert or reducing atmosphere, depending on the oxygen-deficient state of the film. It is possible that a small amount of niobium oxide is contained in the titanium oxide, or a niobium oxide film is provided as an underlying film.
摘要:
A member having high photocatalytic activity and multiple glass using the member are provided. A photocatalyst layer (TiO2) is formed on the surface of a substrate (glass sheet) through the intermediary of a crystalline undercoat layer (ZrO2), and no dead layer is substantially present between the photocatalyst layer and the undercoat layer. Also, provision of an amorphous layer between the substrate and the undercoat layer prevents peeling or defects between the photocatalyst layer and the substrate. In particular, by adjusting the thickness of each layer within a specific range, it is possible to obtain an article having a film configuration in which the optical feature of a reflection color, small variation of the reflectance, and a photocatalytic function are combined.
摘要:
A method for forming a zirconium compound film on a substrate by a sputtering process using a zirconium target which contains a metal (such as tin or zinc) of which the sputtering yield in an argon atmosphere is more than twice that of zirconium in place of a conventional metallic zirconium target. An article coated with the zirconium compound film and a sputtering target used for coating the film are provided. It is desirable that the content of the metal be 1-45 at %, but a third metal can be added thereto.
摘要:
The present invention provides a glass member including a photocatalyst layer and a heat reflecting layer, the glass member having high photocatalytic activity and exhibiting a low reflectance and a colorless or pale blue reflection color tone or a bluish green or green reflection color tone. The glass member is produced by laminating an antistripping layer made of silicon oxide or the like, a crystalline undercoat layer made of zirconium oxide or the like and a photocatalyst layer made of titanium oxide or the like on the other surface of a glass substrate having a heat reflecting layer formed on one surface thereof. The heat reflecting layer is formed such that the other surface of the glass substrate has a reflection chromaticity (a*, b*) satisfying −4≦a*≦2 and −5≦b*≦0 and a visible light reflectance of 10% or less, the crystalline undercoat layer is allowed to have a thickness ranging from 2 to 28 nm, and the photocatalyst layer is allowed to have a thickness ranging from 2 to 20 nm, whereby the glass member having a colorless or pale blue reflection color tone can be produced. Likewise, the heat reflecting layer is formed such that the reflection chromaticity (a*, b*) satisfies −15≦a*≦−2 and −10≦b*≦10 and the visible light reflectance is 13% or less, the crystalline undercoat layer is allowed to have a thickness ranging from 2 to 28 nm, and the photocatalyst layer is allowed to have a thickness ranging from 2 to 14 nm, whereby the glass member having a bluish green or green reflection color tone can be produced.
摘要翻译:本发明提供一种玻璃构件,其包含光催化剂层和热反射层,该玻璃构件具有高的光催化活性并且具有低反射率和无色或浅蓝色反射色调或蓝绿色或绿色反射色调。 玻璃构件通过层压由氧化硅等制成的防夹层,由氧化锆等制成的结晶底涂层和由氧化钛等制成的光催化剂层而制成,在玻璃基板的另一表面上具有 在其一个表面上形成热反射层。 热反射层形成为使得玻璃基板的另一个表面具有满足-4 <= a * <= 2和-5 <= b * <= 0的反射色度(a *,b *)和可见光 反射率为10%以下,使结晶性底涂层的厚度为2〜28nm,使光催化剂层的厚度范围为2〜20nm,由此玻璃构件具有无色或浅色 可以产生蓝色反射色调。 同样地,热反射层形成为使得反射色度(a *,b *)满足-15 <= a * <= - 2和-10 <= b * <= 10,可见光反射率为13% 使得结晶底涂层的厚度为2〜28nm,使光催化剂层的厚度为2〜14nm,由此,具有蓝绿色或绿色反射色调的玻璃构件可以 生产。
摘要:
The present invention provides a method for forming a titanium compound film on a substrate by a sputtering process by use of, in place of a conventional metallic titanium target, a titanium target containing a metal (such as tin or zinc) having two or more times higher sputtering yield in an argon atmosphere than titanium; an article coated with a titanium compound film; and a sputtering target for use in the film coating. The content of tin or zinc in the titanium target containing tin or zinc is preferably in the range of 1 to 45 at %, and further a third metal may be added. These can remove drawbacks in that the film has a low film formation rate and a high output power cannot be applied due to the occurrence of arcing in forming a titanium compound film on the surface of a substrate, such as plate-shaped glass, by a reactive sputtering process.
摘要:
An optical fiber collimator which facilitates optical adjustment. The optical fiber collimator includes a gradient index rod lens, and an optical fiber optically connected to the rod lens. An anti-reflection film is formed on one end face of the rod lens. The anti-reflection film has a refractive index which continuously changes from a value substantially equal to that of a center refractive index of the rod lens to a value substantially equal to that of the refractive index of the optical fiber along a film thickness direction of the anti-reflection film. A refractive index matching medium having a refractive index substantially equal to that of the optical fiber bonds the anti-reflection film to the end face of the optical fiber.