Abstract:
The back reflection in photodiodes is caused by an abrupt index contrast between the input waveguide and the composite waveguide/light absorbing material. In order to improve the back reflection, it is proposed to introduce an angle between the waveguide and the leading edge of the light absorbing material. The angle will result in gradually changing the effective index between the index of the waveguide and the index of the composite section, and consequently lower the amount of light reflecting back.
Abstract:
A multiport free-space wavelength division multiplexing (“WDM”) device is capable of handling multiple optical signals carried in multiple wavelengths (“λn”) using a prism. The WDM device includes an input collimator, prism, and optical filter. The input collimator receives an optical beam containing multiple wavelengths λn traveling through free-space. The prism uses at least two (2) surfaces to generate a first optical beam which travels in opposite direction of the optical beam. The optical filter is situated at a predefined angle with respect to the interface surface of the prism for facilitating frequency separation as well as extracts a first wavelength (“λ1”) from λn to form a first light signal with λ1 and form a second optical beam with the remaining wavelengths of λn. A collimator is used to guide the first light signal to a port.
Abstract:
In one embodiment, an apparatus may Include an optical fiber that may have a surface non-normal to a longitudinal axis of a distal end portion of the optical fiber. The surface may define a portion of an interface configured to redirect electromagnetic radiation propagated from within the optical fiber and incident on the interface to a direction offset from the longitudinal axis. The apparatus may also include a doped silica cap that may be fused to the optical fiber such that the surface of the optical fiber may be disposed within a cavity defined by the doped silica cap.
Abstract:
The present invention provides an optical component and an optical device, and the optical component includes a two-dimensional fiber array and a compensation block, where an end face of the two-dimensional fiber array is obliquely polished as a whole; the compensation block is disposed between the two-dimensional fiber array and another optical component; any two light beams that pass through the two-dimensional fiber array and are emitted from the obliquely polished end face of the two-dimensional fiber array are incident to an end face of the compensation block in parallel, and are incident to an end face of the another optical component in parallel after being refracted by another end face of the compensation block.
Abstract:
An optical component has first and second planar lightwave circuits. The first and second planar lightwave circuits are aligned and jointed such that the position of an i-th optical waveguide (where i is an integer greater than or equal to 1 and less than or equal to n) of the first planar lightwave circuit and that of an i-th optical waveguide of the second planar lightwave circuit are matched on a joint interface. An angle formed by the i-th optical waveguide of the first planar lightwave circuit and a normal of the interface is configured to vary in accordance with a value of i within a range satisfying the Snell's law.
Abstract:
Conventionally, there has been a problem that a structure in which optical signals outputting from a substrate facet in a PLC are optically coupled to a different bulk type optical device is so complicated that its assembly is laborious. There also has been a problem that a structure in which an output facet of a PLC is polished with an angle results in an increase in coupling loss in free space optics. With a lens bonded to an angled facet of a PLC, an optical circuit of the present invention achieves an optical coupling, with low loss, to a bulk-type optical device or another PLC with a simple structure. Moreover, a lens part and an optical fiber part are respectively bonded to different core apertures exposed on a single angled facet. Thereby, optical signals can be inputted to and outputted from the PLC through the single facet.
Abstract:
An optical connector includes: a holding member that holds an optical transmission line; a lens member that has a lens; a concavo-convex structure provided between the holding member and the lens member; and a moving member that moves the concavo-convex structure between a first state where a protrusion and a recess of the concavo-convex structure are engaged with each other and a second state where a gap is formed between the protrusion and the recess.
Abstract:
Methods of attaching an optical line to a phase modulator in a fiber optic gyroscope. The methods include positioning at least one end of the optical line relative to a side of the phase modulator. The end of the optical line may have a first non-perpendicular angle and the side of the phase modulator may have a second non-perpendicular angle. The end of the optical line may be attached to the side of the phase modulator with the end of the optical line being non-parallel to the side of the phase modulator. The optical line may be an optical coil or a light path.
Abstract:
In a lens system, such as for use in optical rotary joints, obliquely tilted cavities are inserted in a light path between light-waveguides and lenses to be coupled thereto in order to compensate lateral displacements between the light waveguides and the lenses. The cavities are filled with an optical medium having a predetermined refractive index in order to achieve a parallel displacement of a light-ray path, so that the ray path passes centrally through the lenses.
Abstract:
An apparatus for providing multiple collimated light beams from optical fibers and the method for producing such beams. The apparatus includes first and second optical fibers that carry light of first and second wavelengths, respectively, a fixture that maintains the fibers in a fixed relationship to one another, and a collimating lens. Light from each of the first and second optical fibers diverges from a face of the fixture. The collimating lens produces first and second collimated light beams that are displaced relative to one another from the light leaving the face. The face of the fixture is positioned to correct for chromatic aberration in the lens.