Abstract:
An optical connector includes a fiber holder with guide holes for guiding optical fibers, a space communicating with the guide holes and to accommodate the optical fibers, and a deformable member that forms at least a part of the fiber holder and causes the space to deform or displace to allow a part or all of the optical fibers to bend in the space.
Abstract:
An optical connector includes a fiber holder to hold optical fibers; a housing to accommodate the optical fibers and the fiber holder; and a thermally driven actuator to displace at least a part of the fiber holder upon application of heat from a first position at which the fiber holder is retracted inside the housing to a second position that allows the optical fibers to be optically coupled to a counterpart connector.
Abstract:
An optical connector includes a fiber holder to hold optical fibers; a housing to accommodate the optical fibers and the fiber holder; and a thermally driven actuator to displace at least a part of the fiber holder upon application of heat from a first position at which the fiber holder is retracted inside the housing to a second position that allows the optical fibers to be optically coupled to a counterpart connector.
Abstract:
An optical connector includes: a holding member that holds an optical transmission line; a lens member that has a lens; a concavo-convex structure provided between the holding member and the lens member; and a moving member that moves the concavo-convex structure between a first state where a protrusion and a recess of the concavo-convex structure are engaged with each other and a second state where a gap is formed between the protrusion and the recess.
Abstract:
An optical connector includes: a holding member that holds an optical transmission line; a lens member that has a lens; a concavo-convex structure provided between the holding member and the lens member; and a moving member that moves the concavo-convex structure between a first state where a protrusion and a recess of the concavo-convex structure are engaged with each other and a second state where a gap is formed between the protrusion and the recess.
Abstract:
A loop heat pipe includes: a first evaporator and a second evaporator each of which vaporizes a liquid-phase working fluid and converts the liquid-phase working fluid to a vapor-phase working fluid; a first condenser and a second condenser each of which condenses the vapor-phase working fluid and converts the vapor-phase working fluid back to the liquid-phase working fluid; a first vapor line through which the working fluid converted to the vapor phase is transported to the first condenser; a first liquid line through which the working fluid converted to the liquid phase is transported to the second evaporator; a second vapor line through which the working fluid converted to the vapor phase is transported to the second condenser; and a second liquid line through which the working fluid converted to the liquid phase is transported to the first evaporator.
Abstract:
An optical module with a plurality of optical waveguide substrates having element mounting openings and end surfaces which are adhered to each other with an optical adhesive; and a plurality of light deflecting element arrays mounted to the respective element mounting openings of the plurality of optical waveguide substrates, the plurality of light deflecting element arrays including a plurality of light deflecting elements.
Abstract:
An all-optical one-by-N optical switch is provided that has fewer components, is easier to control and has fewer optical losses that prior art one-by-N optical switches. An optical switch of the present invention includes an active deflection element formed from an electro-optical material to deflect an optical input from a single input to a selected one of N outputs. In one embodiment of the present invention, a single active deflection element at the input deflects an optical signal across a waveguide that commonly connects the N outputs. The N optical outputs include passive optical elements that are aligned with the deflected optical signal to accept a signal and provide it to a selected optical output. The optical switch can either be monolithic, where the optical material are all electro-optical materials, or can be hybrid, having separately formed components, such as the common waveguide, adhered to the substrate on which the optical switch is formed.
Abstract:
Cascaded optical deflectors are formed from light deflecting elements of an electro-optical material that are individually controlled according to applied voltage differences across the elements. The shape of the elements are determined by the shape of the electrodes on either side of the electro-optical material, while the refractive index is controlled by the sign and magnitude of a voltage difference applied across the elements. In particular, the invention includes light deflection elements that are tilted with respect to one another and that are individually controlled to provide for the deflection of light in an improved manner.
Abstract:
An active optical circuit sheet or active optical circuit board wherein an electro optical switch or optical modulator is driven with a voltage (SIGin) from an electronic device, the electrical signal (SIGin) is converted to an optical signal, transmitted and then converted to an electrical signal (SIGout) at an optical receiver element, and an electrical connection is formed between an optical wiring board and the electronic device for transmission of signals to another or the same electronic device, separating the electrical wiring at the electronic device end and the optical wiring at the optical wiring board end, or alternatively, SIGin and SIGout electrode pads are provided on the side of the optical wiring board on which the optical device is mounted or on the opposite side, for connection with the electronic device.