Abstract:
The invention relates to an improved process for preparing pradofloxacin, in which the substituent in the 7 position is introduced by nucleophilic substitution in an N-methylpyrrolidone-ethanol solvent mixture.
Abstract:
The invention relates to an improved process for preparing pradofloxacin, in which the substituent in the 7 position is introduced by nucleophilic substitution in an N-methylpyrrolidone-ethanol solvent mixture.
Abstract:
The invention relates to an antenna diversity in which high-frequency signals (HF signals) received via a plurality of antennas are fed to a respective tuner (1, 3). The invention is characterized in that the intermediate frequency output signals (IF signals) of the tuners (1, 3) are fed to a connect-through device (5) that connects one IF signal each through to one subsequent demodulator (6).
Abstract:
The present invention relates to bipolar junction transistors (BJTS). The collector region of each BJT is located in a semiconductor substrate surface and adjacent to a first shallow trench isolation (STI) region. A second STI region is provided, which extends between the first STI region and the collection region and undercuts a portion of the active base region with an undercut angle of not more than about 90°. For example, the second STI region may a substantially triangular cross-section with an undercut angle of less than about 90°, or a substantially rectangular cross-section with an undercut angle of about 90°. Such a second STI region can be fabricated using a porous surface section formed in an upper surface of the collector region.
Abstract:
A cost efficient and manufacturable method of fabricating strained semiconductor-on-insulator (SSOI) substrates is provided that avoids wafer bonding. The method includes growing various epitaxial semiconductor layers on a substrate, wherein at least one of the semiconductor layers is a doped and relaxed semiconductor layer underneath a strained semiconductor layer; converting the doped and relaxed semiconductor layer into a porous semiconductor via an electrolytic anodization process, and oxidizing to convert the porous semiconductor layer into a buried oxide layer. The method provides a SSOI substrate that includes a relaxed semiconductor layer on a substrate; a high-quality buried oxide layer on the relaxed semiconductor layer; and a strained semiconductor layer on the high-quality buried oxide layer. In accordance with the present invention, the relaxed semiconductor layer and the strained semiconductor layer have identical crystallographic orientations.
Abstract:
A method of forming a trench in a semiconductor substrate includes a step of converting the cross section of the upper portion of the trench from octagonal to rectangular, so that sensitivity to alignment errors between the trench lithography and the active area lithography is reduced. Applications include a vertical transistor that becomes insensitive to misalignment between the trench and the litho for the active area, in particular a DRAM cell with a vertical transistor.
Abstract:
The invention relates to a receiver device for the mobile reception of high-frequency signals of different services in motor vehicles comprising at least one receiver unit for receiving and processing country specific services and a communications unit for connecting the receiver device to the motor vehicle communications bus.
Abstract:
The present invention relates to a high performance heterojunction bipolar transistor (HBT) having a base region with a SiGe-containing layer therein. The SiGe-containing layer is not more than about 100 nm thick and has a predetermined critical germanium content. The SiGe-containing layer further has an average germanium content of not less than about 80% of the predetermined critical germanium content. The present invention also relates to a method for enhancing carrier mobility in a HBT having a SiGe-containing base layer, by uniformly increasing germanium content in the base layer so that the average germanium content therein is not less than 80% of a critical germanium content, which is calculated based on the thickness of the base layer, provided that the base layer is not more than 100 nm thick.
Abstract:
A strained (tensile or compressive) semiconductor-on-insulator material is provided in which a single semiconductor wafer and a separation by ion implantation of oxygen process are used. The separation by ion implantation of oxygen process, which includes oxygen ion implantation and annealing creates, a buried oxide layer within the material that is located beneath the strained semiconductor layer. In some embodiments, a graded semiconductor buffer layer is located beneath the buried oxide layer, while in other a doped semiconductor layer including Si doped with at least one of B or C is located beneath the buried oxide layer.
Abstract:
A method for locating and tracking devices in a mobile telephone network compries the steps of (a) receiving mobile telephone control parameters in a subscriber database; and (b) using one or more location parameter databases (LPDBs), each mapping control parameters to a geographic location and returning a location result when queried. One or more filters is applied to the control parameters that is received by the subscriber database, each filter selectively initiating processing using a LPDB appropriate to the task of the filter and to the current state of the device.