Abstract:
Apparatus for accurately metering liquid flow based on the injection of a brief heat pulse into the flowing stream, e.g., via a miniature thermistor, and detection of an electronic time derivative of temperature downstream with, e.g., a second microprobe thermistor. This detection triggers a subsequent heat pulse and the cycle repeats, with pulse total corresponding to elapsed liquid throughput, and pulse frequency to flow rate.
Abstract:
An improved technique for the measurement of ions in solution where the ions of interest are chromatographically displaced from an ion exchange column by an eluting ion which is or is made light-absorbing, and where the eluted sample ions, which are transparent (at the monitored wavelength), are detected and quantified from the decrements they cause in effluent absorbance as revealed by photometric monitoring.
Abstract:
Apparatus for accurately metering liquid flow based on the injection of a brief heat pulse into the flowing stream, e.g., via a miniature thermistor, and detection of an electronic time derivative of temperature downstream with, e.g., a second microprobe thermistor. This detection triggers a subsequent heat pulse and the cycle repeats, wth pulse total corresponding to elapsed liquid throughput, and pulse frequency to flow rate.
Abstract:
A method for generating high purity acid or base in an aqueous stream for use in analysis. For generating a base for anion chromatography, the aqueous stream is directed through a cation exchange bed having strongly acid first and weakly acidic second portions. An electrical potential is applied to the bed. Cations on the bed electromigrate into the aqueous stream while hydroxide ions are electrolytically generated to form a base-containing eluent. Analytes to be detected and the generated eluent flow through a detector.
Abstract:
Method and apparatus for ion chromatography including passage of sample through a chromatographic separation column, through a suppressor column containing a resin with exchangeable ions, and then through a detector. The suppressor column is equipped with an electrical potential supplying device to electrolyze water and regenerate the suppressor column.
Abstract:
An ion chromatography method for analysis of a plurality of analyte ions in a sequence of samples in which ion chromatography is performed on a sample, which is passed to a non-precipitating suppressor ion exchange resin and analyzed, the suppressor being regenerated in one step prior to processing of a subsequent sample.
Abstract:
Apparatus and method for the chromatographic separation and analysis of ionic species. This process is carried out utilizing, in an ion separator column, the combination of a low capacity, high performance resin as the stationary phase, and a weakly ionized electrolyte as the eluant or developing reagent, to effect resolution of ionic species in solution. For anion separation, a weak base resin of low capacity and high efficiency is used as the stationary phase, and a solution of a weak base or water as the mobile phase. For cation separation, a weak acid resin of low capacity and high efficiency is used as the stationary phase and a solution of a weak acid as the mobile phase. Because the eluant employed has a very low background conductivity, it will register only insignificantly on the readout from the conductivity cell. Thus, the method of the invention obviates the need for the eluant suppressor or "stripper" device used in conventional ion chromatography. The invention thereby enables continuous, uninterrupted measurements and eliminates the reservoirs, pumps, complex valving and electronics associated with such suppressor columns.
Abstract:
Method and apparatus for generating an acid or base, e.g. for chromatographic analysis of anions. For generating a base the method includes the steps of providing a cation source in a cation source reservoir, flowing an aqueous liquid stream through a base generation chamber separated from the cation source reservoir by a barrier (e.g. a charged membrane) substantially preventing liquid flow while providing a cation transport bridge, applying an electric potential between an anode cation source reservoir and a cathode in the base generation chamber to electrolytically generate hydroxide ions therein and to cause cations in the cation source reservoir to electromigrate and to be transported across the barrier toward the cathode to combine with the transported cations to form cation hydroxide, and removing the cation hydroxide in an aqueous liquid stream as an effluent from the first base generation chamber. Suitable cation sources include a salt solution, a cation hydroxide solution or cation exchange resin.
Abstract:
A continuous electrochemical pump comprising a water generator compartment, an anode compartment on one side of said generator compartment, a cation exchange barrier, separating the generator compartment from the anode compartment, a first electrode in electrical communication with the anode compartment, a cathode compartment adjacent the generator chamber, an anion exchange barrier, separating the generation compartment from the cathode compartment, and a second electrode in electrical communication with the cathode compartment. Use of the pump as a sample concentrator. A feedback loop for the pump. A reservoir, with or without an intermediate piston, on the output side of the pump.
Abstract:
Method and apparatus for generating an acid or base, e.g. for chromatographic analysis of anions. For generating a base the method includes the steps of providing a cation source in a cation source reservoir, flowing an aqueous liquid stream through a base generation chamber separated from the cation source reservoir by a barrier (e.g. a charged membrane) substantially preventing liquid flow while providing a cation transport bridge, applying an electric potential between an anode cation source reservoir and a cathode in the base generation chamber to electrolytically generate hydroxide ions therein and to cause cations in the cation source reservoir to electromigrate and to be transported across the barrier toward the cathode to combine with the transported cations to form cation hydroxide, and removing the cation hydroxide in an aqueous liquid stream as an effluent from the first base generation chamber. Suitable cation sources include a salt solution, a cation hydroxide solution or cation exchange resin.