Abstract:
A resist film is formed on a surface of a wafer. Then, a liquid layer used for irradiating the resist film with exposure light rays is formed from a liquid between an optical component facing the resist film and the surface of the wafer. The liquid is capable of transmitting the exposure light rays and has a function of cleaning a surface of the wafer and a surface of the optical component. Then, the resist film is irradiated with the exposure light rays projected from the optical component and transmitted through the liquid layer, to perform light exposure with a predetermined pattern on the resist film. Then, development is performed on the wafer after the light exposure, to form a predetermined pattern on the wafer.
Abstract:
Provided are a developing method and a developing apparatus that can reduce process time and improve throughput in a developing process using a developer containing organic solvent. The present invention relates to a developing method for performing developing by supplying a developer containing organic solvent to a substrate having its surface coated with a resist and exposed. The developing method of the invention includes a liquid film forming step for forming a liquid film by supplying the developer from a developer supply nozzle to a central portion of the substrate while rotating the substrate, and a developing step for developing the resist film on the substrate while rotating the substrate in a state where the supply of the developer from the developer supply nozzle to the substrate is stopped and in such a manner that the liquid film of the developer would not dry.
Abstract:
A substrate treatment method including a first treatment process (S13 to S16) for exposing, heating, and developing a substrate on which a first resist is formed, thereby forming a first resist pattern, and a second treatment process (S17 to S20) for forming a second resist film on the substrate on which the first resist pattern is formed, exposing, heating, and developing the substrate on which the second resist film is formed, thereby forming a second resist pattern. Also, the substrate treatment method compensates a first treatment condition in a first treatment process (S22 to S25) based on a measured value of a line width of the second resist pattern and a second treatment condition in a second treatment process (S26 to S29) based on a measured value of a line width of the first resist pattern.
Abstract:
A heat processing device that bakes a substrate having a resist coating film containing a volatile substance, includes a hot plate 2, a hot plate temperature control unit 3, a box member 1a, 5, 32 that defines a heat space 30 and a fluid space 31, air supply unit 18, 18A and suction unit 10, 10A that create an air current flowing in a horizontal direction in the fluid space 31, and a controller 22, 22A that controls the hot plate temperature control unit 3, the air supply unit 18, 18A, suction unit 10, 10A and the gas temperature control unit 19 so that a relationship of TF
Abstract:
A developer nozzle is moved from a periphery of a wafer toward the central portion while an exposed substrate held at a spin chuck is being rotated about a vertical axis and while a developing solution is being discharged from the developer nozzle, and this way the developing solution is supplied to the surface of the wafer, the developer nozzle having a slit-like ejection port whose longitudinal direction is oriented to the direction perpendicular to the radial direction of the wafer. The movement speed of the nozzle is higher than a case where a nozzle with a small-diameter circular nozzle is used, and this enables a development time to be reduced. Further, the thickness of a developing solution on a substrate can be reduced, so that the developing solution can be saved.
Abstract:
A cleaning apparatus for immersion light exposure includes a cleaning apparatus main body including a mechanism configured to perform a cleaning process on the substrate, and a control section configured to control respective components of the cleaning apparatus main body. The control section is arranged to fabricate a new process recipe in response to input of a surface state of a film formed on a substrate, such that the new process recipe contains hardware conditions and/or process conditions corresponding to the surface state, with reference to relationships stored therein between parameter values representing a surface state of a film formed on a substrate and hardware conditions and/or process conditions for performing suitable cleaning for the parameter values; and to control the cleaning apparatus main body to perform a cleaning process in accordance with the new process recipe.
Abstract:
A resist film formed on a substrate is coated with a water-repellent protective film and the substrate is subjected to a developing process after the substrate has been processed by an immersion exposure process. The protective film is removed from the substrate after the resist film has been processed by the immersion exposure process, the substrate is processed by a heating process, and then the substrate is subjected to a developing process. The surface of the substrate is cleaned with a cleaning liquid before the protective film is removed and after the substrate has been processed by the immersion exposure process or the surface of the substrate is cleaned with a cleaning liquid after removing the protective film and before the substrate is subjected to the heating process.
Abstract:
Accurate coating and developing having high intrasurface uniformity is achieved by suppressing the influence of components of a resist that may be eluted while a substrate coated with the resist is processed by immersion exposure. A coating unit coats a surface of a substrate with a resist. then, a first cleaning means including a cleaning nozzle cleans the substrate and then the substrate is subjected to an exposure process. Since only a small amount of components of the resist dissolves in a transparent liquid layer formed on the substrate for exposure, an exposure process can form lines in accurate line-widths. Consequently, a resist pattern of lines having accurate line-widths having high intrasurface uniformity can be formed on the substrate by developing the exposed resist.
Abstract:
In a developing processing of a wafer having a resist film low in the dissolving rate in a developing solution formed thereon and subjected to an exposure treatment, a developing solution of a low concentration is supplied first onto a wafer and the wafer is left to stand for a prescribed time to permit a developing reaction to proceed, followed by further supplying a developing solution having a concentration higher than that of the developing solution supplied first onto the wafer, leaving the substrate to stand and subsequently rinsing the wafer, thereby improving the uniformity of the line width in the central portion and the peripheral portion of the wafer.
Abstract:
According to the present invention, during the photolithography processing of a substrate, exposure processing is performed immediately after removal of a coating film on the rear surface of the substrate, and a coating film is formed on the rear surface of the substrate immediately after the exposure processing. Thereafter, etching treatment and so on are performed, and a series of these treatment and processing steps are performed a predetermined number of times. The coating film has been formed on the rear surface of the substrate at the time for the etching treatment, so that even if the coating film gets minute scratches, the rear surface of the substrate itself is protected by the coating film and thus never scratched. Further, since the coating film on the rear surface of the substrate is removed immediately before the exposure processing, the rear surface of the substrate can be flat for the exposure processing.