Abstract:
A reconstruction method for spectral image includes: obtaining a measurement image of an imaging object, and reconstructing and obtaining a spectral image of the imaging object according to the measurement image and a pre-calibrated sensing matrix. The spectral image includes spectral information at different position points of the imaging object. Through the method, defects of the time-consuming spectral image reconstruction method and the low resolution of the obtained spectral image in the related art can be overcame and the spectral image of the target imaging object can be obtained by reconstructing quickly and the obtained spectral image has high spatial resolution and no mosaic.
Abstract:
A spectral chip structure design method includes: obtaining an application-specific spectral library, and determining a spectral principal component based on the application-specific spectral library; performing non-negative processing on the spectral principal component to obtain a non-negative spectral principal component; and determining transmission spectra of the spectral chip structure based on the non-negative spectral principal component. By summarizing spectral features of the application-specific spectral library through the spectral principal component, a quantitative evaluation for the spectral library is realized and then by designing the spectral chip structure on this basis, a targeted quantitative design on the application-specific spectral library can be realized and the accuracy of reconstructing spectra by the spectral chip can be improve
Abstract:
A miniature spectrum chip includes a CIS wafer and a light modulation layer. The light modulation layer includes a plurality of micro-nano structure units arranged on the surface of a photosensitive area of the CIS wafer. Each micro-nano structure unit include a plurality of micro-nano structure arrays. In each micro-nano structure unit, different micro-nano structure arrays are two-dimensional gratings formed of internal units of different shapes. In each micro-nano structure unit, internal units provided in different micro-nano structure arrays have different shapes, and each group of micro-nano structure arrays has different modulation effects on light of different wavelengths, such that the degree of freedom of “shape” is fully utilized to obtain rich modulation effects on incident light. The precision of spectral restoration is improved. By using two-dimensional grating structures based on internal units of different shapes, rich wide-spectrum modulation characteristics with regard to incident light are achieved.
Abstract:
An image collection chip, an object imaging recognition device and an object imaging recognition method are provided. The image collection chip comprises an optical modulation layer and an image sensing layer. The optical modulation layer is located on the image sensing layer. The optical modulation layer is provided with at least two modulation units and the image sensing layer is provided with sensing units corresponding to the at least two modulation units in a form of up and down. Each of the at least two modulation units is provided with at least one modulation subunit. Two or more modulation units among the at least two modulation units have different graphic structures, and the two or more modulation units having different graphic structures have different modulation roles on spectrum.
Abstract:
An image collection chip, an object imaging recognition device and an object imaging recognition method are provided. In each set of the pixel confirmation modules of the chip, each modulation unit and each sensing unit are correspondingly provided up and down on the optical modulation layer and the image sensing layer respectively; each modulation unit is provided with at least one modulation subunit, and each of the modulation subunits is provided with several modulation holes penetrating into the optical modulation layer; and the respective modulation holes in a same modulation subunit are arranged into a two-dimensional graphic structure having a specific pattern.
Abstract:
An optical modulation micro-nano structure, a micro-integrated spectrometer and a spectrum modulation method are provided. The optical modulation micro-nano structure includes an optical modulation layer located on a photoelectric detection layer that can modulate incident light to form differential responses on the photoelectric detection layer, so as to obtain an original spectrum by reconstruction, thereby overcoming the defects that the existing spectrometers rely too much on precise optical components, which makes spectrometers bulky, heavy and expensive. The optical modulation layer includes a base plate and at least one modulation unit; the base plate is provided on the photoelectric detection layer, and each of the modulation units is located on the base plate; each modulation unit is provided with several modulation holes penetrating into the base plate, and respective modulation holes inside a same modulation unit are arranged into a two-dimensional graphic structure with a specific pattern.
Abstract:
A noninvasive glucometer and a blood glucose detection method are provided. The noninvasive glucometer includes a light source, a spectrometer and detecting space into which an object to be detected intervenes; the detecting space is connected with the light source and the spectrometer respectively, so that a spectrum emitted by the light source can generate incident light entering the spectrometer after passing through the object to be detected. The spectrometer includes: an optical modulation layer configured to perform light modulation on the incident light to obtain a modulated spectrum; a photoelectric detection layer located below the optical modulation layer, and configured to receive the modulated spectrum and provide differential responses with respect to the modulated spectrum; and a signal processing circuit layer located below the photoelectric detection layer and configured to reconstruct the differential responses to obtain an original spectrum.
Abstract:
The present invention provides a method and apparatus for processing signals of a semiconductor detector, including: acquiring a relationship of a time difference between anode and cathode signals of the semiconductor detector with an anode signal amplitude; obtaining an optimal data screening interval according to the relationship of the time difference between anode and cathode signals of the semiconductor detector with the anode signal amplitude, wherein the optimal data screening interval is an interval where the time difference between the anode and cathode signals is greater than 50 ns; and screening and processing the collected data according to the optimal data screening interval when the semiconductor detector collects data. The present invention better overcomes the inherent crystal defects of the detector, reduces the effect of background noise, increases the energy resolution of the cadmium zinc telluride detector under room temperature, and improves the peak-to-compton ratio.