摘要:
The present invention relates to a solution for handling an evolved allocation and retention priority in a telecommunications network. The solution is based on obtaining an evolved ARP, obtaining an authorized ARP based on the evolved ARP, and transmitting this authorized ARP to nodes in the network. Furthermore, the authorized ARP may be included in information elements involved in mobility procedure messages.
摘要:
The embodiments herein relate to a method performed by a control plane node (303) for handling a UE (101) which roams into a visited network (100a). At least the network in which the control plane node (303) is comprised is a MSC network. The control plane node (303) transmits a create chain request message to a service chain controller (305). The create chain request message is a request to create a chain of UPF nodes (308) that user plane packets to or from the UE (101) should traverse. The control plane node (303) receives a create chain response message from the service chain controller (305). The create chain response message indicates that the requested chain has been created.
摘要:
The present disclosure relates to methods and devices, of activating lawful interception. According to the present disclosure, a gateway comprises a controller for controlling, using a flow control protocol, the flow of packets through a switch controlled by the gateway. The switch receives (S11), from the controller, a lawful interception activation request, comprising a target identity; activates (S12), in response to said request, lawful interception on a target identified by the target identity; duplicates (S13), in the switch, packets targeting the target; encapsulates (S14) the duplicated packets with an additional header; and forwards (S15) duplicates from the switch directly to the lawful interception service provider entity (1) for further distribution to a Lawful interception Agency.
摘要:
The disclosure relates to methods and nodes for reducing the signaling load in a communications network. One claim of the disclosure relates to a method in a first network node for handling of service requests. The method comprises the steps of: generating a service request message, transmitting the service request message to a second network node, establishing a radio access bearer, RAB, to the second network node, and transmitting uplink data via said RAB to the second network node.
摘要:
This disclosure is directed to a method in a MME node or a S4-SGSN node for dynamic Policy and Charging Rules Function (PCRF) assisted management of network parameters, where the method comprises sending or receiving network related parameters to or from, respectively, a PCRF node through a direct MME/S4-SGSN-PCRF interface. This disclosure is also directed to a MME node and a S4 SGSN node and a PCRF node configured to operatively perform the method.
摘要:
The embodiments herein relate to a method in a first network unit (101) for handling states in a network (100). The first network unit (101) is adapted to supervise power in the network (100). The first network unit (101) receives a work-load report from one or more of a plurality of second network units (105). The second network units (105) consume power. When the second network units (105) are awake and the workload is below a threshold, the first network unit (101) transmits a sleep request to at least one of the second network units (105) to change from awake to sleep. When the plurality of second network units (105) are asleep and the workload has reached or is above the threshold, the first network unit (101) transmits a wakeup request to at least one of the second network units (105) to change from sleep to awake.
摘要:
The application relates to the procedures Routing Area Update RAU in UTRAN and Tracking Area Update TAU in LTE. Furthermore, it relates to PDP context procedure in UTRAN as well as PDN connection procedure in LTE. In the current RAU procedure, a SGSN, which fails to update the Routing Area, e.g. because it receives the DNS return error, sends a RAU Reject with the cause code CC#17 indicating a network failure back to the user equipment (114b). The cause code CC#17 in the RAU Reject causes the user equipment to send a new RAU Request. Thus, the user equipment is stuck in a loop of sending a RAU Request and receiving a RAU Reject. This problem is solved by the present application in that SGSN keeps track of the number of rejections when doing RAU. When the number of rejections is above a certain threshold, the SGSN will send a RAU Reject with cause code CC#10 to the user equipment (115b), whereby the cause code CC#10 indicates implicit detach of the user equipment. In other words, the cause code is changed from CC#17 to CC#10 and in order to avoid further looping. The same principle is applied to TAU in LTE as well as to PDP procedures in UTRAN and LTE.
摘要:
This disclosure is directed to a method in a MME node or a S4-SGSN node for dynamic Policy and Charging Rules Function (PCRF) assisted management of network parameters, where the method comprises sending or receiving network related parameters to or from, respectively, a PCRF node through a direct MME/S4-SGSN-PCRF interface. This disclosure is also directed to a MME node and a S4 SGSN node and a PCRF node configured to operatively perform the method.
摘要:
The present invention relates to a solution for handling an evolved allocation and retention priority in a telecommunications network. The solution is based on obtaining an evolved ARP, obtaining an authorized ARP based on the evolved ARP, and transmitting this authorized ARP to nodes in the network. Furthermore, the authorized ARP may be included in information elements involved in mobility procedure messages.
摘要:
The application relates to the procedures Routing Area Update RAU in UTRAN and Tracking Area Update TAU in LTE. Furthermore, it relates to PDP context procedure in UTRAN as well as PDN connection procedure in LTE. In the current RAU procedure, a SGSN, which fails to update the Routing Area, e.g. because it receives the DNS return error, sends a RAU Reject with the cause code CC#17 indicating a network failure back to the user equipment (114b). The cause code CC#17 in the RAU Reject causes the user equipment to send a new RAU Request. Thus, the user equipment is stuck in a loop of sending a RAU Request and receiving a RAU Reject. This problem is solved by the present application in that SGSN keeps track of the number of rejections when doing RAU. When the number of rejections is above a certain threshold, the SGSN will send a RAU Reject with cause code CC#10 to the user equipment (115b), whereby the cause code CC#10 indicates implicit detach of the user equipment. In other words, the cause code is changed from CC#17 to CC#10 and in order to avoid further looping. The same principle is applied to TAU in LTE as well as to PDP procedures in UTRAN and LTE.