Abstract:
A method implements a control plane of an evolved packet core (EPC) of a long term evolution (LTE) network in a cloud computing system. A cloud manager monitors resource utilization of each control plane module and the control plane traffic handled by each control plane module. The cloud manager detects a threshold level of resource utilization or traffic load for one of the plurality of control plane modules of the EPC. A new control plane module is initialized as a separate virtual machine by the cloud manager in response to detecting the threshold level. The new control plane module signals the plurality of network elements in the data plane to establish flow rules and actions to establish differential routing of flows in the data plane using the control protocol, wherein flow matches are encoded using an extensible match structure in which the flow match is encoded as a type-length-value (TLV).
Abstract:
The present disclosure relates to methods and devices, of activating lawful interception. According to the present disclosure, a gateway comprises a controller for controlling, using a flow control protocol, the flow of packets through a switch controlled by the gateway. The switch receives (S11), from the controller, a lawful interception activation request, comprising a target identity; activates (S12), in response to said request, lawful interception on a target identified by the target identity; duplicates (S13), in the switch, packets targeting the target; encapsulates (S14) the duplicated packets with an additional header; and forwards (S15) duplicates from the switch directly to the lawful interception service provider entity (1) for further distribution to a Lawful interception Agency.
Abstract:
A method for packet classification. In some embodiments, the method includes instantiating a first machine; allocating a first SC to the first machine, the first SC being configured to classify a packet based on information contained in a field of a header included in the packet; instantiating a second machine; allocating a second SC to the second machine, the second SC being configured to classify a packet based on information contained in a field of a header included in the packet; monitoring the first machine to detect if the first machine is in an overload state; and in response to detecting that the first machine is in an overload state, instantiating a third machine and allocating a third SC to the third machine, the third SC being configured to classify a packet based on information contained in a field of a header included in the packet.
Abstract:
The embodiments herein relate to a method in a first network unit (101) for handling states in a network (100). The first network unit (101) is adapted to supervise power in the network (100). The first network unit (101) receives a work-load report from one or more of a plurality of second network units (105). The second network units (105) consume power. When the second network units (105) are awake and the workload is below a threshold, the first network unit (101) transmits a sleep request to at least one of the second network units (105) to change from awake to sleep. When the plurality of second network units (105) are asleep and the workload has reached or is above the threshold, the first network unit (101) transmits a wakeup request to at least one of the second network units (105) to change from sleep to awake.
Abstract:
A method implements a control plane of an evolved packet core (EPC) of a long term evolution (LTE) network in a cloud computing system. A cloud manager monitors resource utilization of each control plane module and the control plane traffic handled by each control plane module. The cloud manager detects a threshold level of resource utilization or traffic load for one of the plurality of control plane modules of the EPC. A new control plane module is initialized as a separate virtual machine by the cloud manager in response to detecting the threshold level. The new control plane module signals the plurality of network elements in the data plane to establish flow rules and actions to establish differential routing of flows in the data plane using the control protocol, wherein flow matches are encoded using an extensible match structure in which the flow match is encoded as a type-length-value (TLV).