Abstract:
A composition and a solution for temporary bonding are provided. The composition includes a dianhydride monomer, a light-absorbing monomer, and a light-absorbing material. The light-absorbing monomer includes at least one of N,N,N,N-(p-aminophenyl)-p-phenylenediamine (DPDA) and N,N-(p-aminophenyl)-p-phenylenediamine (TPDA). The light-absorbing material includes carbon black and silicon dioxide.
Abstract:
A photosensitive polyimide composition; the composition comprises a base agent and a curing agent comprising a photoinitiator. By applying an aliphatic diamine monomer, which has a long carbon chain, and a grafting monomer, which has a main carbon chain having a double bond and an epoxy group at two ends respectively, to a method of making the base agent, a mixture of the base agent and the curing agent can be screen printed to form a photosensitive polyimide film on a copper foil. Also, the photosensitive polyimide film can be exposed under low exposure energy, and can be developed to a solder-resistant polyimide thin film by a weak alkaline developer after exposed. In addition, the solder-resistant polyimide thin film has low dielectric constant, low dielectric loss, good flame resistance, good solder resistance, and good pencil hardness. Accordingly, the photosensitive polyimide composition is applicable to high density flexible printed circuit boards.
Abstract:
A method of making a thermally curable solder-resistant ink, which comprises the following steps: polymerizing an aliphatic diamine monomer having a long carbon chain, an aromatic dianhydride monomer, an aromatic diamine monomer having a carboxylic group, and an anhydride monomer having a carboxylic group in an aprotic solvent to obtain a polyamine acid; cyclizing the polyamine acid to obtain a modified polyimide; and mixing the modified polyimide and a curing agent to obtain the thermally curable solder-resistant ink. By the steps mentioned above, the thermally curable solder-resistant ink made from the method has a dielectric constant less than 3.00 and a dielectric loss less than 0.01 and thereby is applicable to high frequency electronic equipments. Also, the thermally curable solder-resistant ink has good electrical properties, folding endurance, solder resistance, warpage resistance, flame resistance, acid endurance, alkali endurance, good solvent resistance and low water absorption.
Abstract:
A method of transferring micro devices is provided. A carrier substrate having a first surface and a second surface opposite to each other is provided, wherein a plurality of micro devices is disposed on the first surface, and each micro device binds to the first surface through laser debonding gel. Next, a receiving substrate is subjected to be relatively closer to the first surface, and a mask is provided on the second surface. Afterwards, the second surface with the mask is irradiated with a laser light, so as to keep the micro devices without laser irradiation binding on the first surface, and the micro devices irradiated with the laser light lose adhesive force and transfer to the receiving substrate.
Abstract:
A photosensitive polyimide composition; the composition comprises a base agent and a curing agent comprising a photoinitiator. By applying an aliphatic diamine monomer, which has a long carbon chain, and a grafting monomer, which has a main carbon chain having a double bond and an epoxy group at two ends respectively, to a method of making the base agent, a mixture of the base agent and the curing agent can be screen printed to form a photosensitive polyimide film on a copper foil. Also, the photosensitive polyimide film can be exposed under low exposure energy, and can be developed to a solder-resistant polyimide thin film by a weak alkaline developer after exposed. In addition, the solder-resistant polyimide thin film has low dielectric constant, low dielectric loss, good flame resistance, good solder resistance, and good pencil hardness. Accordingly, the photosensitive polyimide composition is applicable to high density flexible printed circuit boards.
Abstract:
An electromagnetic shielding film includes an insulation layer, and an electromagnetic shielding layer arranged at one side of the insulation layer. The electromagnetic shielding layer includes a polymer substrate and an electromagnetic shielding material. The polymer substrate has epoxy structures. The electromagnetic shielding material has a plurality of aculeate electromagnetic shielding microparticles dispersed in the polymer substrate.
Abstract:
A method of making a thermally curable solder-resistant ink, which comprises the following steps: polymerizing an aliphatic diamine monomer having a long carbon chain, an aromatic dianhydride monomer, an aromatic diamine monomer having a carboxylic acid group, and an anhydride monomer having a carboxylic acid group in an aprotic solvent to obtain a polyamine acid; cyclizing the polyamine acid to obtain a polyimide; and mixing the polyimide and a curing agent to obtain the thermally curable solder-resistant ink. By the steps mentioned above, the thermally curable solder-resistant ink made from the method has a dielectric constant less than 3.00 and a dielectric loss less than 0.01 and thereby is applicable to high frequency electronic equipments. Also, the thermally curable solder-resistant ink has good electrical properties, folding endurance, solder resistance, warpage resistance, flame resistance, acid endurance, alkali endurance, good solvent resistance and low water absorption.