Abstract:
Apparatus and methods for level shifting in a radio frequency system are provided. In certain configurations, a radio frequency system includes a level shifter operable to provide level shifting to an input signal. The level shifter is biased by a bias voltage and powered by a supply voltage and a charge pump voltage. The radio frequency system further includes a charge pump configured to provide the charge pump voltage and to receive a mode signal operable to enable the charge pump in a first state and to disable the charge pump in a second state. The radio frequency system further includes a level shifter control circuit configured to control the bias voltage to track the charge pump voltage when the mode signal is in the first state, and to control the bias voltage with the supply voltage when the mode signal is in the second state.
Abstract:
Apparatus and methods for controlling radio frequency (RF) switches are disclosed. Provided herein are apparatus and methods for controlling RF switches. In certain configurations, an RF system includes a charge pump for generating a charge pump voltage, an RF switch, a level shifter for turning on or off the RF switch, and a level shifter control circuit for controlling the level shifter. The charge pump receives a mode signal used to enable or disable the charge pump. Additionally, the level shifter receives power in part from the charge pump voltage, and controls the RF switch based on a switch enable signal. The level shifter control circuit receives the mode signal and biases the level shifter with a bias voltage that changes based on a state of the mode signal.
Abstract:
Front end systems with switched termination for enhanced intermodulation distortion performance are provided herein. The switched termination can be used on transmit paths and/or receive paths of the front end system to suppress impedance variation when the signal paths are inactive. For example, with respect to switched termination for transmit paths, a front end system can include a frequency multiplexing circuit connected to a band switch by a first radio frequency (RF) signal path and by a second RF signal path. The band switch selectively provides the frequency multiplexing circuit with a first transmit signal over the first RF signal path and with a second transmit signal over the second RF signal path. The front end system further includes a switched termination circuit in shunt with the first RF signal path and operable to turn on to suppress impedance variation when the first RF signal path is inactive.
Abstract:
Apparatus and methods for multi-mode charge pumps are disclosed herein. In certain configurations, a multi-mode charge pump includes an output terminal, a mode control circuit that operates the multi-mode charge pump in a selected mode, a first switched capacitor, a capacitor charging circuit, and a plurality of switches. The capacitor charging circuit connects a first end of the first switched capacitor to a charging voltage in a first phase of a clock signal, and connects the first end of the first switched capacitor to a reference voltage in a second phase of the clock signal. The charging voltage has a voltage level that changes based on the selected mode. The plurality of switches connect a second end of the first switched capacitor to the reference voltage in the first phase, and connect the second end of the first switched capacitor to the output terminal in the second phase.
Abstract:
Disclosed are devices and methods related to field-effect transistor (FET) structures configured to provide reduced per-area values of resistance in the linear operating region (Rds-on). Typical FET devices such as silicon-on-insulator (SOI) device require larger device sizes to desirably lower the Rds-on values. However, such increases in size result in undesirably larger die sizes. Disclosed are various examples of shapes of source, drain, and corresponding gate that yield reduced Rds-on values without having to increase the device size. In some implementations, such FET devices can be utilized in high power radio-frequency (RF) switching applications.
Abstract:
Disclosed are devices and methods related to field-effect transistor (FET) structures configured to provide reduced per-area values of resistance in the linear operating region (Rds-on). Typical FET devices such as silicon-on-insulator (SOI) device require larger device sizes to desirably lower the Rds-on values. However, such increases in size result in undesirably larger die sizes. Disclosed are various examples of shapes of source, drain, and corresponding gate that yield reduced Rds-on values without having to increase the device size. In some implementations, such FET devices can be utilized in high power radio-frequency (RF) switching applications.
Abstract:
Front end systems with switched termination for enhanced intermodulation distortion performance are provided herein. The switched termination can be used on transmit paths and/or receive paths of the front end system to suppress impedance variation when the signal paths are inactive. For example, with respect to switched termination for transmit paths, a front end system can include a frequency multiplexing circuit connected to a band switch by a first radio frequency (RF) signal path and by a second RF signal path. The band switch selectively provides the frequency multiplexing circuit with a first transmit signal over the first RF signal path and with a second transmit signal over the second RF signal path. The front end system further includes a switched termination circuit in shunt with the first RF signal path and operable to turn on to suppress impedance variation when the first RF signal path is inactive.
Abstract:
Front end systems with switched termination for enhanced intermodulation distortion performance are provided herein. The switched termination can be used on transmit paths and/or receive paths of the front end system to suppress impedance variation when the signal paths are inactive. For example, with respect to switched termination for transmit paths, a front end system can include a frequency multiplexing circuit connected to a band switch by a first radio frequency (RF) signal path and by a second RF signal path. The band switch selectively provides the frequency multiplexing circuit with a first transmit signal over the first RF signal path and with a second transmit signal over the second RF signal path. The front end system further includes a switched termination circuit in shunt with the first RF signal path and operable to turn on to suppress impedance variation when the first RF signal path is inactive.
Abstract:
Apparatus and methods for multi-mode charge pumps are disclosed herein. In certain configurations, a multi-mode charge pump includes an output terminal, a mode control circuit that operates the multi-mode charge pump in a selected mode, a first switched capacitor, a capacitor charging circuit, and a plurality of switches. The capacitor charging circuit connects a first end of the first switched capacitor to a charging voltage in a first phase of a clock signal, and connects the first end of the first switched capacitor to a reference voltage in a second phase of the clock signal. The charging voltage has a voltage level that changes based on the selected mode. The plurality of switches connect a second end of the first switched capacitor to the reference voltage in the first phase, and connect the second end of the first switched capacitor to the output terminal in the second phase.
Abstract:
Disclosed are devices and methods related to radio-frequency (RF) switches having silicon-on-insulator (SOI) field-effect transistors (FETs). In some embodiments, an RF switch can include an FET with shaped source, drain, and gate selected to yield a reduced per-area value of resistance in linear operating region (Rds-on). In some implementations, a plurality of such FETs can be connected in series to allow use of SOI technology in high power RF switching applications while maintaining a relatively small die size.