Abstract:
A waveguide coupler includes a first waveguide and a second waveguide. The waveguide coupler also includes a connecting waveguide disposed between the first waveguide and the second waveguide. The connecting waveguide includes a first material having a first index of refraction and a second material having a second index of refraction higher than the first index of refraction.
Abstract:
A method of operating a BPSK modulator includes receiving an RF signal at the BPSK modulator and splitting the RF signal into a first portion and a second portion that is inverted with respect to the first portion. The method also includes receiving the first portion at a first arm of the BPSK modulator, receiving the second portion at a second arm of the BPSK modulator, applying a first tone to the first arm of the BPSK modulator, and applying a second tone to the second arm of the BPSK modulator. The method further includes measuring a power associated with an output of the BPSK modulator and adjusting a phase applied to at least one of the first arm of the BPSK modulator or the second arm of the BPSK modulator in response to the measured power.
Abstract:
A method of operating a BPSK modulator includes receiving an RF signal at the BPSK modulator and splitting the RF signal into a first portion and a second portion that is inverted with respect to the first portion. The method also includes receiving the first portion at a first arm of the BPSK modulator, receiving the second portion at a second arm of the BPSK modulator, applying a first tone to the first arm of the BPSK modulator, and applying a second tone to the second arm of the BPSK modulator. The method further includes measuring a power associated with an output of the BPSK modulator and adjusting a phase applied to at least one of the first arm of the BPSK modulator or the second arm of the BPSK modulator in response to the measured power.
Abstract:
A method for fabricating a photonic composite device for splitting functionality across materials comprises providing a composite device having a platform and a chip bonded in the platform. The chip is processed comprising patterning, etching, deposition, and/or other processing steps while the chip is bonded to the platform. The chip is used as a gain medium and the platform is at least partially made of silicon.
Abstract:
A method of fabricating a composite semiconductor structure is provided. Pedestals are formed in a recess of a first substrate. A second substrate is then placed within the recess in contact with the pedestals. The pedestals have a predetermined height so that a device layer within the second substrate aligns with a waveguide of the first substrate, where the waveguide extends from an inner wall of the recess.
Abstract:
A waveguide coupler includes a first waveguide and a second waveguide. The waveguide coupler also includes a connecting waveguide disposed between the first waveguide and the second waveguide. The connecting waveguide includes a first material having a first index of refraction and a second material having a second index of refraction higher than the first index of refraction.
Abstract:
An optical circulator includes a first optical isolator including a first port and a second port and a plurality of optical isolators coupled to the second port of the first optical isolator. Each of the plurality of optical isolators comprise a first port and a second port.
Abstract:
A method for fabricating a composite device comprises providing a platform, providing a chip, and bonding the chip to the platform. The platform has a base layer and a device layer above the base layer. An opening in the device layer exposes a portion of the base layer. The chip is bonded to the portion of the base layer exposed by the opening in the device layer. A portion of the chip extends above the platform and is removed.
Abstract:
A method of fabricating a composite semiconductor structure is provided. Pedestals are formed in a recess of a first substrate. A second substrate is then placed within the recess in contact with the pedestals. The pedestals have a predetermined height so that a device layer within the second substrate aligns with a waveguide of the first substrate, where the waveguide extends from an inner wall of the recess.
Abstract:
A composite photonic device comprises a platform, a chip, and a contact layer. The platform comprises silicon. The chip is made of a III-V material. The contact layer has indentations to help control a flow of solder during bonding of the platform with the chip. In some embodiments, pedestals are placed under an optical path to prevent solder from flowing between the chip and the platform at the optical path.