摘要:
A method of manufacturing a non-volatile memory cell includes forming a first dielectric layer on a substrate. A second dielectric layer having a trench is formed on the first dielectric layer. Thereafter, a pair of charge storage spacers is formed on sidewalls of the trench. A third dielectric layer is then formed over the substrate to cover the first dielectric layer, the charge storage spacers and second dielectric layer. A conductive structure is formed on the third dielectric layer over the charge storage spacers. Subsequently, portions of the third dielectric layer, the second dielectric layer and first dielectric layer not covered by the conductive structure are removed. Ultimately, source/drain regions are formed in the substrate at each side of the conductive structure.
摘要:
A method of manufacturing a non-volatile memory cell is described. The method includes forming a first dielectric layer on a substrate and then forming a patterned mask layer with a trench on the first dielectric layer. A pair of charge storage spacers is formed on the sidewalls of the trench. The patterned mask layer is removed and then a second dielectric is formed on the substrate covering the pair of charge storage spacers. A conductive layer is formed on the second dielectric layer and subsequently patterned to form a gate structure on the pair of charge storage spacers. Portions of the second and first dielectric layers outside the gate structure are removed and then a source/drain region is formed in the substrate on each side of the conductive gate structure.
摘要:
A method of manufacturing a silicon-oxide-nitride-oxide-silicon (SONOS) memory is provided herein. In the method, a bottom silicon oxide layer is formed over a substrate. A patterned mask layer having a trench therein is formed over the bottom silicon oxide layer. A charge-trapping layer is formed over the substrate covering the surface of the trench. The charge-trapping layer is etched back to form a pair of charge storage spacers on the sidewalls of the trench. After removing the mask layer, a top silicon oxide layer is formed over the substrate covering the charge storage spacers and the bottom silicon oxide layer. A gate corresponding to the pair of charge storage spacers is formed on the top silicon oxide layer. A source/drain region is formed in the substrate on each side of the gate.
摘要:
A method of manufacturing a silicon-oxide-nitride-oxide-silicon (SONOS) memory is provided herein. In the method, a bottom silicon oxide layer is formed over a substrate. A patterned mask layer having a trench therein is formed over the bottom silicon oxide layer. A charge-trapping layer is formed over the substrate covering the surface of the trench. The charge-trapping layer is etched back to form a pair of charge storage spacers on the sidewalls of the trench. After removing the mask layer, a top silicon oxide layer is formed over the substrate covering the charge storage spacers and the bottom silicon oxide layer. A gate corresponding to the pair of charge storage spacers is formed on the top silicon oxide layer. A source/drain region is formed in the substrate on each side of the gate.
摘要:
A method of manufacturing a non-volatile memory cell is described. The method includes forming a first dielectric layer on a substrate and then forming a patterned mask layer with a trench on the first dielectric layer. A pair of charge storage spacers is formed on the sidewalls of the trench. The patterned mask layer is removed and then a second dielectric is formed on the substrate covering the pair of charge storage spacers. A conductive layer is formed on the second dielectric layer and subsequently patterned to form a gate structure on the pair of charge storage spacers. Portions of the second and first dielectric layers outside the gate structure are removed and then a source/drain region is formed in the substrate on each side of the conductive gate structure.
摘要:
A method of manufacturing a non-volatile memory cell includes forming a first dielectric layer on a substrate. A second dielectric layer having a trench is formed on the first dielectric layer. Thereafter, a pair of charge storage spacers is formed on sidewalls of the trench. A third dielectric layer is then formed over the substrate to cover the first dielectric layer, the charge storage spacers and second dielectric layer. A conductive structure is formed on the third dielectric layer over the charge storage spacers. Subsequently, portions of the third dielectric layer, the second dielectric layer and first dielectric layer not covered by the conductive structure are removed. Ultimately, source/drain regions are formed in the substrate at each side of the conductive structure.
摘要:
A method of rendering a graphical object (e.g., 801) on a page (800), is disclosed. A region of the page containing the graphical object (801) is marked as output incompatible based on the graphical object (801) being output incompatible. A bounding box comprising the marked region is determined. A proportion of a number of the regions marked as output incompatible are determined to a total number of regions in the bounding box. A further region within the bounding box is marked as output incompatible to increase the determined proportion above a threshold. The graphical object in the marked region and the further marked region is converted into an output compatible graphical object if the determined proportion is above the threshold. The output compatible graphical object is rendered.
摘要:
EMI emissions generated by clock signals in a multi-slot electronic system are reduced by providing out-of-phase clock signals to alternate slots, which cause EMI emissions at typical testing distances and farther to be reduced. An electronic equipment comprises a plurality of slots, each slot operable to receive a clock signal and a plurality of phases of the clock signal, wherein a first phase of the clock signal is routed to a portion of the slots and a second phase of the clock signal is routed to a different portion of the slots. The second phase of the clock signal may be substantially 180° out-of-phase with the first phase of the clock signal.
摘要:
Provided is a sandal comprising a base comprising a forward through hole and two aligned through holes at either side, and a strap comprising a projecting enlargement at a forward end and a fork including two rear bifurcations each having two projecting enlargements at its both ends. The enlargements are fastened in the through holes. The sandal has increased structural strength.
摘要:
The present disclosure provides a catalyst for oxidative dehydrogenation of butene to butadiene, comprising at least one compound of formula ZnaAlbMcFeeOf.Z(α-Fe2O3), wherein M is at least one element chosen from Be, Mg, Ca, Sr, Mn, Ba, Cu, Co, and Ni, Z represents the percentage by weight of α-Fe2O3 in the catalyst and ranges from 10% to 70%. Also provided herein is a process of preparing said catalyst and the use of said catalyst in an oxidative dehydrogenation of butene to butadiene processes.
摘要翻译:本公开内容提供了丁烯至丁二烯氧化脱氢的催化剂,其包含至少一种式ZnaAlbMcFeeOf.Z(α-Fe2O3)化合物,其中M为选自Be,Mg,Ca,Sr,Mn,Ba ,Cu,Co和Ni中,Z表示催化剂中α-Fe 2 O 3的重量百分比,为10〜70%。 本文还提供了制备所述催化剂的方法和所述催化剂在丁烯到丁二烯过程的氧化脱氢中的用途。