摘要:
There is provided a photoelectric conversion element which can prevent the contact resistance between a non-crystalline semiconductor layer containing impurities and an electrode formed on the non-crystalline semiconductor layer from increasing, and can improve the element characteristics. A photoelectric conversion element (10) includes a semiconductor substrate (12), a first semiconductor layer (20n), a second semiconductor layer (20p), a first electrode (22n), and a second electrode (22p). The first semiconductor layer has a first conductive type. The second semiconductor layer has a second conductive type. The first electrode is formed on the first semiconductor layer. The second electrode is formed on the second semiconductor layer. The first electrode includes a first transparent conductive layer (26n) formed on the first semiconductor layer, and a first metal layer (28n) formed on the first transparent conductive layer. The first metal layer includes a plurality of metal crystal grains in which the average crystal grain size in the in-surface direction of the first metal layer is greater than the thickness of the first metal layer.
摘要:
There is provided a photoelectric conversion device which can prevent the contact resistance between a non-crystalline semiconductor layer containing impurities and an electrode formed on the non-crystalline silicon layer from increasing, and can improve the element characteristics. A photoelectric conversion element (10) includes a silicon substrate (12), a first non-crystalline semiconductor layer (20n), a second non-crystalline semiconductor layer (20p), a first electrode (22n), and a second electrode (22p). One electrode (22n) includes first conductive layers (26n, 26p), and second conductive layers (28n, 28p). The first conductive layers (26n, 26p) have a first metal as a main component. The second conductive layers (28n, 28p) contain a second metal which is more likely to be oxidized than the first metal, are formed to be in contact with the first conductive layers (26n, 26p), and are disposed to be closer to the silicon substrate (12) than the first conductive layers (26n, 26p).
摘要:
Provided are a solar cell module, a method of manufacturing the solar cell module, and a photovoltaic power generation system including the solar cell module. The solar cell module includes a solar cell group in which a plurality of solar cells are arranged, and a first heat storage layer that is disposed on a rear surface side of the solar cell group. The first heat storage layer is a layer that contains 80% by weight or greater of a heat storage material including a first latent heat storage material having a phase change temperature of T1. The solar cell module may further include a second heat storage layer, which includes a second latent heat storage material having a phase change temperature T2 different from the phase change temperature T1, on a rear surface side of the first heat storage layer.
摘要:
A photoelectric conversion element 100 includes an n-type monocrystalline silicon substrate 1, an non-crystalline thin film 2, i-type non-crystalline thin films 11 to 1m and 21 to 2m-1, p-type non-crystalline thin films 31 to 3m, and n-type non-crystalline thin films 41 to 4m-1. The non-crystalline thin film 2 is configured of non-crystalline thin films 201 and 202 and is disposed in contact with the surface on the light incident side of the n-type monocrystalline silicon substrate 1. The non-crystalline thin film 201 is configured of a-Si, and the non-crystalline thin film 202 is configured of a-SiNx (0
摘要:
There is provided a photoelectric conversion element which includes an n-type single crystal silicon substrate (1). The n-type single crystal silicon substrate (1) includes a central region (11) and an end-portion region (12). The central region (11) is a region which has the same central point as the central point of the n-type single crystal silicon substrate (1) and is surrounded by a circle. The diameter of the circle is set to be a length which is 40% of a length of the shortest side among four sides of the n-type single crystal silicon substrate (1). The central region (11) has a thickness t1. The end-portion region (12) is a region of being within 5 mm from an edge of the n-type single crystal silicon substrate (1). The end-portion region (12) is disposed on an outside of the central region (11) in an in-plane direction of the n-type single crystal silicon substrate (1), and has a thickness t2 which is thinner than the thickness t1. The end-portion region (12) has average surface roughness which is smaller than average surface roughness of the central region (11).
摘要:
A photoelectric conversion element 100 includes an n-type monocrystalline silicon substrate 1, an non-crystalline thin film 2, i-type non-crystalline thin films 11 to 1m and 21 to 2m−1, p-type non-crystalline thin films 31 to 3m, and n-type non-crystalline thin films 41 to 4m−1. The non-crystalline thin film 2 is configured of non-crystalline thin films 201 and 202 and is disposed in contact with the surface on the light incident side of the n-type monocrystalline silicon substrate 1. The non-crystalline thin film 201 is configured of a-Si, and the non-crystalline thin film 202 is configured of a-SiNx (0.78≦x≦1.03). The i-type non-crystalline thin films 11 to 1m and 21 to 2m−1 are disposed in contact with the rear surface of the n-type monocrystalline silicon substrate 1. The p-type non-crystalline thin films 31 to 3m are disposed in contact with the i-type non-crystalline thin films 11 to 1m. The n-type non-crystalline thin films 41 to 4m−1 are disposed in contact with the i-type non-crystalline thin films 21 to 2m−1.
摘要:
There is provided a photoelectric conversion element which can prevent the contact resistance between a non-crystalline semiconductor layer containing impurities and an electrode formed on the non-crystalline semiconductor layer from increasing, and can improve the element characteristics. A photoelectric conversion element (10) includes a semiconductor substrate (12), a first semiconductor layer (20n), a second semiconductor layer (20p), a first electrode (22n), and a second electrode (22p). The first semiconductor layer (20n) has a first conductive type. The second semiconductor layer (20p) has a second conductive type opposite to the first conductive type. The first electrode (22n) is formed on the first semiconductor layer (20n). The second electrode (22p) is formed on the second semiconductor layer (20p). At least one electrode of the first electrode (22n) and the second electrode (22p) includes a plurality of metal crystal grains. The average crystal grain size of the metal crystal grains in the in-surface direction of electrode is greater than the thickness of the electrode.