摘要:
A monolithic electronic device includes a first nitride epitaxial structure including a plurality of nitride epitaxial layers. The plurality of nitride epitaxial layers include at least one common nitride epitaxial layer. A second nitride epitaxial structure is on the common nitride epitaxial layer of the first nitride epitaxial structure. A first plurality of electrical contacts is on the first epitaxial nitride structure and defines a first electronic device in the first nitride epitaxial structure. A second plurality of electrical contacts is on the first epitaxial nitride structure and defines a second electronic device in the second nitride epitaxial structure. A monolithic electronic device includes a bulk semi-insulating silicon carbide substrate having implanted source and drain regions and an implanted channel region between the source and drain regions, and a nitride epitaxial structure on the surface of the silicon carbide substrate. Corresponding methods are also disclosed.
摘要:
A monolithic electronic device includes a first nitride epitaxial structure including a plurality of nitride epitaxial layers. The plurality of nitride epitaxial layers include at least one common nitride epitaxial layer. A second nitride epitaxial structure is on the common nitride epitaxial layer of the first nitride epitaxial structure. A first plurality of electrical contacts is on the first epitaxial nitride structure and defines a first electronic device in the first nitride epitaxial structure. A second plurality of electrical contacts is on the first epitaxial nitride structure and defines a second electronic device in the second nitride epitaxial structure. A monolithic electronic device includes a bulk semi-insulating silicon carbide substrate having implanted source and drain regions and an implanted channel region between the source and drain regions, and a nitride epitaxial structure on the surface of the silicon carbide substrate. Corresponding methods are also disclosed.
摘要:
A monolithic electronic device includes a first nitride epitaxial structure including a plurality of nitride epitaxial layers. The plurality of nitride epitaxial layers include at least one common nitride epitaxial layer. A second nitride epitaxial structure is on the common nitride epitaxial layer of the first nitride epitaxial structure. A first plurality of electrical contacts is on the first epitaxial nitride structure and defines a first electronic device in the first nitride epitaxial structure. A second plurality of electrical contacts is on the first epitaxial nitride structure and defines a second electronic device in the second nitride epitaxial structure. A monolithic electronic device includes a bulk semi-insulating silicon carbide substrate having implanted source and drain regions and an implanted channel region between the source and drain regions, and a nitride epitaxial structure on the surface of the silicon carbide substrate. Corresponding methods are also disclosed.
摘要:
Semiconductor device structures and methods of fabricating semiconductor devices structures are provided that include a semi-insulating or insulating GaN epitaxial layer on a conductive semiconductor substrate and/or a conductive layer. The semi-insulating or insulating GaN epitaxial layer has a thickness of at least about 4 μm. GaN semiconductor device structures and methods of fabricating GaN semiconductor device structures are also provided that include an electrically conductive SiC substrate and an insulating or semi-insulating GaN epitaxial layer on the conductive SiC substrate. The GaN epitaxial layer has a thickness of at least about 4 μm. GaN semiconductor device structures and methods of fabricating GaN semiconductor device structures are also provided that include an electrically conductive GaN substrate, an insulating or semi-insulating GaN epitaxial layer on the conductive GaN substrate, a GaN based semiconductor device on the GaN epitaxial layer and a via hole and corresponding via metal in the via hole that extends through layers of the GaN based semiconductor device and the GaN epitaxial layer.
摘要:
Contacts for a nitride based transistor and methods of fabricating such contacts provide a recess through a regrowth process. The contacts are formed in the recess. The regrowth process includes fabricating a first cap layer comprising a Group III-nitride semiconductor material. A mask is fabricated and patterned on the first cap layer. The pattern of the mask corresponds to the pattern of the recesses for the contacts. A second cap layer comprising a Group III-nitride semiconductor material is selectively fabricated (e.g. grown) on the first cap layer utilizing the patterned mask. Additional layers may also be formed on the second cap layer. The mask may be removed to provide recess(es) to the first cap layer, and contact(s) may be formed in the recess(es). Alternatively, the mask may comprise a conductive material upon which a contact may be formed, and may not require removal.
摘要:
Methods of fabricating transistor in which a first Group III nitride layer is formed on a substrate in a reactor, and a second Group III nitride layer is formed on the first Group III nitride layer. An insulating layer such as, for example, a silicon nitride layer is formed on the second Group III nitride layer in-situ in the reactor. The substrate including the first Group III nitride layer, the second group III nitride layer and the silicon nitride layer is removed from the reactor, and the silicon nitride layer is patterned to form a first contact hole that exposes a first contact region of the second Group III nitride layer. A metal contact is formed on the first contact region of the second Group III nitride layer.
摘要:
High electron mobility transistors are provided that include a non-uniform aluminum concentration AlGaN based cap layer having a high aluminum concentration adjacent a surface of the cap layer that is remote from the barrier layer on which the cap layer is provided. High electron mobility transistors are provided that include a cap layer having a doped region adjacent a surface of the cap layer that is remote from the barrier layer on which the cap layer is provided. Graphitic BN passivation structures for wide bandgap semiconductor devices are provided. SiC passivation structures for Group III-nitride semiconductor devices are provided. Oxygen anneals of passivation structures are also provided. Ohmic contacts without a recess are also provided.
摘要:
Methods of fabricating transistor in which a first Group III nitride layer is formed on a substrate in a reactor, and a second Group III nitride layer is formed on the first Group III nitride layer. An insulating layer such as, for example, a silicon nitride layer is formed on the second Group III nitride layer in-situ in the reactor. The substrate including the first Group III nitride layer, the second group III nitride layer and the silicon nitride layer is removed from the reactor, and the silicon nitride layer is patterned to form a first contact hole that exposes a first contact region of the second Group III nitride layer. A metal contact is formed on the first contact region of the second Group III nitride layer.
摘要:
Group III Nitride based field effect transistor (FETs) are provided having a power degradation of less than about 3.0 dB when operated at a drain-to-source voltage (VDS) of about from about 28 to about 70 volts, a gate to source voltage (Vgs) of from about −3.3 to about −14 volts and a normal operating temperature for at least about 10 hours.
摘要:
Group III Nitride based field effect transistor (FETs) are provided having a power degradation of less than about 3.0 dB when operated at a drain-to-source voltage (VDS) of about from about 28 to about 70 volts, a gate to source voltage (Vgs) of from about −3.3 to about −14 volts and a normal operating temperature for at least about 10 hours.