Abstract:
In an optical recording medium having a super-resolution layer structure using near-field light, comprising a readout layer 3 for forming a light scattering region 9 in the center portion of a laser spot, and a recording layer 5 for receiving near-field light 10 generated from the light scattering region 9 of the readout layer 3, scattering bodies 61 for increasing the generated near-field light are provided while enhancing a scattering effect of the near-field light 10 applied to a mark 51 of the recording layer 5.
Abstract:
An optical near-field generating element is provided with: a light shielding member, which is placed on an optical path of light emitted from a light source, for defining a micro opening having a diameter equal to or shorter than a wavelength of the light; and a dielectric film placed in close contact with the micro opening. Alternatively, an optical near-field generating element is provided with a light shielding member, which is placed on an optical path of lights emitted from a light source, for defining a micro opening having a diameter equal to or shorter than a wavelength of the light, the shielding member equipped with: a main portion for defining a basic shape of the micro opening; and a protrusion portion protruding from the main portion toward the center of the micro opening.
Abstract:
An optical near-field generating element is provided with: a light shielding member, which is placed on an optical path of light emitted from a light source, for defining a micro opening having a diameter equal to or shorter than a wavelength of the light; and a dielectric film placed in close contact with the micro opening. Alternatively, an optical near-field generating element is provided with a light shielding member, which is placed on an optical path of lights emitted from a light source, for defining a micro opening having a diameter equal to or shorter than a wavelength of the light, the shielding member equipped with: a main portion for defining a basic shape of the micro opening; and a protrusion portion protruding from the main portion toward the center of the micro opening.
Abstract:
An optical near-field generating element is provided with: a light shielding member, which is placed on an optical path of light emitted from a light source, for defining a micro opening having a diameter equal to or shorter than a wavelength of the light; and a dielectric film placed in close contact with the micro opening. Alternatively, an optical near-field generating element is provided with a light shielding member, which is placed on an optical path of lights emitted from a light source, for defining a micro opening having a diameter equal to or shorter than a wavelength of the light, the shielding member equipped with: a main portion for defining a basic shape of the micro opening; and a protrusion portion protruding from the main portion toward the center of the micro opening.
Abstract:
The optical recording medium includes: an information recording substrate; and pits formed on the information recording substrate, each of the pits corresponding to a recording information unit comprising a plurality of bits, and having one of predetermined patterns for respectively generating different optical characteristics by projecting a light spot onto the pits.
Abstract:
A diagnostic imaging apparatus includes a ventricular volume-variation measuring unit that measures sequential variations in a size of a ventricle within at least one heart beat, from images of a heart scanned in each of a plurality of time phases; a scanning-condition setting unit that specifies a time phase of little cardiac motion based on variations in the size of the ventricle measured by the ventricular volume-variation measuring unit, and sets scanning conditions so as to collect data in the specified time phase; and an imaging unit that collects data based on the scanning conditions set by the scanning-condition setting unit, and reconstructs an image from the collected data.
Abstract:
A recording apparatus records information onto a recording medium. The recording apparatus is provided with: a near-field light device; and a control unit for controlling the near-field light device. The near-field light device is provided with: a light source; a quantum dot structure which is laminated on the light source; a plurality of quantity dots which are included in the quantity dot structure and each of which generates near-field light on the basis of light emitted from the light source; and an output end which is configured to output at least one portion of energy of the near-field light to the exterior of the quantity dot structure. The control unit of the recording apparatus controls the light source to emit the light upon recording the information, thereby increasing temperature of a region of the recording medium based on a size of the output end.
Abstract:
A magnetic resonance imaging (MRI) system obtains an MR image of an object. The system detects an ECG signal and performs a pulse sequence of RF gradient magnetic fields toward the object. Imaging defined by the pulse sequence is longer in temporal length than one heartbeat. The system further acquires an MR signal from the object in response to performance of the pulse sequence and produces the MR image based on the acquired MR signal. Also possible are: a plurality of divided MT pulses instead of the conventional single MT pulse, an SE-system pulse sequence having a shorter echo train spacing, and the generation of sounds by applying gradient pulses incorporated in an imaging pulse sequence so as to automatically instruct a patient to perform an intermittent breath hold.
Abstract:
A storage unit stores a parameter list that defines a method of creating scanning conditions for a preparation scan from scanning conditions set for a main scan, with respect to each type of scanning. A scanning-condition edit/scan positioning unit receives an operation of selecting a type of a preparation scan, and when the operation of selecting the type of the preparation scan is received, the scanning-parameter limit calculating unit acquires the parameter list corresponding to the type of the preparation scan, from among the parameter lists stored by the storage unit, creates scanning conditions for the preparation scan from scanning conditions set for a main scan based on the parameter list corresponding to the type of the preparation scan. The pulse-sequence execution-data creating unit then causes execution of the preparation scan based on the created scanning conditions.
Abstract:
A magnetic resonance imaging apparatus includes an RF coil unit which generates RF pulses toward a subject, and which receives an MR signal from the subject. Gradient magnetic field coils generate a gradient magnetic field for slice selection, a gradient magnetic field for phase encoding and a gradient magnetic field for frequency encoding, respectively. An arithmetic unit generates image data on the basis of the MR signal, and a sequence controller controls phase encoding gradient magnetic field coils in order to generate flow pulses for dephasing or rephasing the MR spin of blood flow within the subject, in the same direction as that of the phase encoding gradient magnetic field.