摘要:
A method of controlling the rate of traffic flow through an Iub interface of a Radio Network Controller is described. The method includes obtaining a licensed rate, which defines the maximum throughput permitted through the Iub interface, at the Radio Network Controller. The rate of traffic flow through the Iub interface and all Iu interfaces of the Radio Network Controller is measured, and the extent to which packet switched traffic flow through the Iub interface exceeds the licensed rate identified. If the packet switched traffic flow through the Iub interface exceeds the licensed rate, packets are dropped from traffic flow through the Iub interface to reduce the traffic flow to the licensed rate.
摘要:
A method of controlling the rate of traffic flow through an Iub interface of a Radio Network Controller is described. The method includes obtaining a licensed rate, which defines the maximum throughput permitted through the Iub interface, at the Radio Network Controller. The rate of traffic flow through the Iub interface and all Iu interfaces of the Radio Network Controller is measured, and the extent to which packet switched traffic flow through the Iub interface exceeds the licensed rate identified. If the packet switched traffic flow through the Iub interface exceeds the licensed rate, packets are dropped from traffic flow through the Iub interface to reduce the traffic flow to the licensed rate.
摘要:
The invention discloses a method for detecting and controlling traffic congestion in a wireless telecommunications system (100, 300, 400) comprising at least a first node (130, 330, 430) such as a Radio Base Station, and at least one second node (110, 310, 410) such as a Radio Network Controller, the system also comprising a Transport Network, TN (120, 320, 420), for conveying traffic between said first and second nodes, in which system (100, 300, 400) the traffic can comprise one or more flow. The method comprises the use of one flow control function (315, 415) per each of said flows, said one flow control function (315, 415) comprising a congestion detection and control function. In addition, the congestion detection function acts to reduce the traffic on said flow before the system becomes congested.
摘要:
The present invention proposes a solution in the area of HSDPA flow control. It proposes an improvement to transport network congestion detection and avoidance. The improvement proposes to use a measurement of incoming bitrate to determine the reduction of bitrate after a transport network congestion event. The advantage is that high bitrate reduction is only used when it is necessary; otherwise only small bitrate reduction is used, which results in small oscillation, and consequently higher transport network utilization.
摘要:
A mechanism is provided to resolve the Iub transport network congestion efficiently for HSDPA by dynamic adjustment of the transmit window of the RLC. The RLC protocol is extended with congestion control functionality. The Iub TN and Uu congestion detection method in the Node-B (120) signals the congestion to the RNC (110), and this congestion indication is used by RLC to react on the congestion situation. In the RNC (110), the transmission window of the RLC is adjusted to control the flow rate. When congestion is detected, the RLC transmission window size is decreased. When there is no congestion, then the RLC transmission window size is increased automatically. Different types of congestion are distinguished and are handled in different ways. Alternatively, congestion control is achieved without any modification in the RLC layer from the existing standard. Here, RLC STATUS PDUs are used to change the RLC transmission window size.
摘要:
In one aspect, a mechanism is provided to resolve the Iub transport network congestion in the uplink direction by using the transmission window of the RLC to control the transfer rate of the flow. The RNC (110) detects the Iub TN congestion for the flow in the uplink. The EUL flow control running in the RNC (110) calculates the RLC transmission window size for the UE for the flow and the calculated RLC transmission window size is signaled to the peer RLC entity in the UE (130) through an RLC STATUS PDU.
摘要:
The present invention relates to a method and an arrangement in a communication network node (15) of achieving an optimal initial shaping rate for a new packet flow on a transport network between said communication network node (15) and a second communication network node (10) in a communication network system. The shaping rates of ongoing packet flows on said transport network are determined. And, based on said determined shaping rates of ongoing packet flows, an initial shaping rate for said new packet flow is selected so as to obtain a maximized fairness among all shaping rates.
摘要:
A method and network node for dynamically controlling throughput over an air interface between a mobile terminal and a radio telecommunication system. The method detects a type of service being utilized by the mobile terminal, and dynamically selects a target delay for the traffic between a base station and the mobile terminal. The detecting may be done by a Deep Packet Inspection (DPI) engine implemented in a core network node such as a Gateway GPRS Support Node (GGSN). When the mobile terminal activates a delay-sensitive service, the target delay is dynamically changed to a smaller value to reduce latency. When the mobile terminal deactivates all delay-sensitive services, the target delay is dynamically changed to a larger value to increase throughput.
摘要:
In one aspect, a method and apparatus are disclosed that can provide an efficient and robust HSDPA flow control solution. The RNC (110) can receive information regarding allowed data rate from the Node-B (120) for a data flow in a downlink direction. Based on the received data rate information and optionally based on other predetermined considerations, the RNC (110) adjusts the RLC PDU transmission window size for the data flow. When the RLC PDU transmission window is properly sized, reaction to congestion can be performed quicker relative to the existing Iub flow control.
摘要:
In one aspect, a mechanism is provided to resolve the Iub transport network congestion in the uplink direction by using the transmission window of the RLC to control the transfer rate of the flow. The RNC (110) detects the Iub TN congestion for the flow in the uplink. The EUL flow control running in the RNC (110) calculates the RLC transmission window size for the UE for the flow and the calculated RLC transmission window size is signaled to the peer RLC entity in the UE (130) through an RLC STATUS PDU.