摘要:
A Radio Network Controller, an RNC (105), for an HSPA enabled cellular access system. The RNC is arranged to be connected to a Radio Base Station (110) by a Transport Network (120) through which the RNC (105) sends and receives traffic to and from UEs (115). The RNC (105) comprises a function (210) for Radio Link Control, RLC, for the UEs, and is arranged to detect congestion in the Transport Network (120) to or from each UE. The RNC (105) is arranged to, when detecting congestion in the Transport Network (120) to or from a UE (115), use its RLC function (210) to discard an RLC Service Data Unit, SDU, in a receive buffer, the receive buffer being in the UE (115) if the congestion is in the direction to the UE (115) and in the RNC (105) if the congestion is in the direction from the UE (115).
摘要:
A method is provided of transporting data packets over a telecommunications transport network. The data packets are carried by a plurality of bearers, each carrying data packets that relate to different ones of a plurality of services. In the method bandwidth profiling is applied to the data packets of each bearer, independently of the other bearers, to identify and mark the data packets of each of the bearers that are conformant with a predetermined maximum information rate for the bearer. The data packets are forwarded for transport through the transport network, wherein, if there is insufficient bandwidth available in the transport network to transport all data packets, data packets not identified by the profiling as being conformant are discarded, so as not to be transported through the transport network.
摘要:
A multi-mode congestion control is employed in a transport network interconnecting a radio access node and a control node of a communication network. The transport network employs a window-based state providing a window-based congestion control mode for a data flow. This mode involves notifying an application level transport protocol implemented in a sending source of the communication network of any detected congestion event. If a congestion event in the transport network is detected a switch to a rate-based state is performed. The rate-based state provides a rate-based congestion control mode involving transmitting a rate-reducing message from the radio access node to the control node to trigger a reduction in the bitrate of the data flow in response to the detected congestion event.
摘要:
A first device (124) in a High Speed Downlink Packet Access environment (100) may generate a High Speed Downlink Shared Channel data frame (700, 730, 735, 750) that includes a group of packet data units, where a first packet data unit of the group of packet data units is of a different length than a second packet data unit of the group of packet data units. The first device (124) may further transfer the High Speed Downlink Shared Channel data frame (700, 730, 735, 750) to a second device (122).
摘要:
Congestion is detected in a radio access transport network that includes radio network controllers and base stations. Data packet flows associated with mobile radio communications are controlled in the radio access transport network by a corresponding flow control entity. Each flow is monitored for congestion in the transport network. A flow control action is determined in response to the detected congestion. Performance of the flow control action is delayed for a predetermined delay period before the flow control action may be performed. Delaying flow control action after congestion is detected allows other affected flows to detect or be notified of the congestion, thereby making congestion detection more fair.
摘要:
In one aspect, the present invention advantageously provides far greater granularity in adjusting the maximum (schedulable) uplink bit rates of users than is directly available from a defined grant table that is used for making scheduled uplink grants to those users. As a non-limiting example, the EUL scheduler in a NodeB in a WCDMA network calculates the “effective” bit rate desired for one or more users over a given time interval, and determines the pattern of scheduling grants to make from the grant table over that interval, to produce the desired effective bit rate(s). This capability enables the EUL scheduler to make relatively fine fractional adjustments to the aggregate uplink data rate for a plurality of users, thus allowing much more precise reductions in the aggregate uplink data rate of those users. The EUL scheduler makes these more precise adjustments, for example, in response to indications of congestion on the backhaul connection between the NodeB and its supporting RNC. Grant variations also may be used in the HARQ processes of one or more users, for obtaining better bit rate control granularity.
摘要:
The present invention is related to a method, base station (RBS) and computer program for quickly recovering from a detected congestion over the air interface. First the current bitrate at the which the air interface congestion has been detected is stored as a new reference bitrate. Thereafter, the base station (RBS) requests a reduction of the bitrate associated with the air interface. When the congestion condition has subsided the base station (RBS) requests a boost of the bitrate associated with the air interface up to the stored new reference bitrate. When finally the new reference bitrate has been reached, the base station (RBS) requests a linear increase of the bitrate associated with the air interface.
摘要:
A method for traffic control in a cellular telephony system (100), each cell comprising at least one node, an RBS (130), for the control of traffic to and from users (150) in the cell. The traffic to each UE (150) can comprise at least one flow, and the method is intended for control of the flows in the traffic to UEs (150) in the system (100). and comprises one control function for each controlled flow to each of said UEs (150). Said control function comprises a congestion avoidance function (240, 440) which detects the presence or absence of congestion in a flow to an UE (150), and which, upon congestion or low utilization of the network reduces the bit rate to the UE (150) in a non-linear fashion, and which, in the absence of congestion, linearly increases the bit rate of the traffic to the UE (150).
摘要:
Example embodiments of protocol multiplexing systems comprise a multiplexer which receives multiplexed packet(s) and which uses contents of the multiplexed packets to form carrying packets which are stored in an output buffer. Some of the multiplexed packets belong to differing ones of plural virtual channels, but the multiplexer uses multiplexed packet(s) belonging to only one virtual channel to form a given carrying packet. The multiplexing systems accommodate transmission on a same virtual path of numerous connections belonging to differing virtual channels, balancing both payload efficiency and delay considerations.
摘要:
A technique for routing one or more service tunnels in a telecommunications backhaul network (110) is provided. The telecommunications backhaul network has a first routing path (132) and a second routing path (134). As to a method aspect of the technique, data of the one or more service tunnels is transmitted on the first routing path (132). A reduction in transmission capacity is detected on the first routing path (134) by means of a first routing path condition. The first routing path condition indicates a state of the first routing path (132). A second routing path condition is determined indicating a state of the second routing path (134) in response to the detected reduction in transmission capacity on the first routing path (132). It is decided upon rerouting one or more of the service tunnels from the first routing path (132) to the second routing path (132) based on both the first routing path condition and the second routing path condition.