Abstract:
A method for two-dimensional mapping of crystal information of a polycrystalline material may include acquiring a diffraction pattern acquired by scanning an electron beam to a polycrystalline material, generating a plurality of clusters by applying a clustering algorithm to the acquired diffraction pattern based on unsupervised learning, acquiring crystal information of the polycrystalline material by applying a parallel deep convolutional neural network (DCNN) algorithm to each of the plurality of generated clusters based on supervised learning, and generating a two-dimensional image in which the acquired crystal information is mapped.
Abstract:
A signal transmitting method according to an exemplary embodiment of the present invention includes channel-coding broadcasting channel information by using a first scrambling code in a first frame within a broadcasting channel information updating period including a plurality of frames, and channel-coding the broadcasting channel information by using a second scrambling code in a second frame within the broadcasting channel information updating period. The second scrambling code is different from the first scrambling code.
Abstract:
The present disclosure provides a wear system for providing a service. The wear system may comprise a wear device configured to detect authentication information regarding a user wearing the wear device in a first state, to transmit the authentication information to a server, and if authentication of the user is complete through the server, to detect user data of the wear device in a second state and to transmit the user data to the server and the server, upon detecting identification information regarding the user using the authentication information received from the wear device, to complete the authentication of the user, to generate a user profile based on the user data received from the wear device, to store the user profile corresponding to the identification information, and to provide service information related to the user to the wear device.
Abstract:
Provided are a receiver and a receiving method for a scalable bandwidth in a mobile station of an Orthogonal Frequency Division Multiplexing (OFDM) system. The receiving method includes the steps of: (a) filtering a received RF signal; (b) oscillating a frequency according to a center frequency control signal to output a local oscillation frequency; (c) down-converting the filtered RF signal by using the local oscillation frequency; (d) scalable-filtering the down-converted signal while adjusting a bandwidth according to a bandwidth control signal; (e) controlling gain of the scalable-filtered signal; (f) converting the gain-controlled analog signal into a digital signal by using a sampling frequency matching with a corresponding bandwidth according to an ADC control signal; and (g) demodulating the converted digital signal, outputting the center frequency control signal, the bandwidth control signal, and the ADC control signal according to control information received from an upper layer.
Abstract:
An artificial intelligence system and method are disclosed herein. The system includes a processor which implements the method, including: receiving by an input unit a first user input including a request to execute a task using at least one of the electronic device or an external device, transmitting by a wireless communication unit first data associated with the first user input to an external server, receiving a first response from the external server including information associated with at least one of the first user input and a sequence of electronic device states for performing at least a portion of the task, receiving a second user input assigning at least one of a voice command and a touch operation received by a touch screen display as the request to perform the task, and transmitting second data associated with the second user input to the external server.
Abstract:
An artificial intelligence system and method are disclosed herein. The system includes a processor which implements the method, including: receiving by an input unit a first user input including a request to execute a task using at least one of the electronic device or an external device, transmitting by a wireless communication unit first data associated with the first user input to an external server, receiving a first response from the external server including information associated with at least one of the first user input and a sequence of electronic device states for performing at least a portion of the task, receiving a second user input assigning at least one of a voice command and a touch operation received by a touch screen display as the request to perform the task, and transmitting second data associated with the second user input to the external server.
Abstract:
An artificial intelligence system and method are disclosed herein. The system includes a processor which implements the method, including: receiving by an input unit a first user input including a request to execute a task using at least one of the electronic device or an external device, transmitting by a wireless communication unit first data associated with the first user input to an external server, receiving a first response from the external server including information associated with at least one of the first user input and a sequence of electronic device states for performing at least a portion of the task, receiving a second user input assigning at least one of a voice command and a touch operation received by a touch screen display as the request to perform the task, and transmitting second data associated with the second user input to the external server.
Abstract:
A method for operating an electronic device according to an embodiment of the present invention may comprise: if an occurrence of a notification is detected, determining an application related to the notification or a keyword extractable from the notification; determining whether feedback of a user for the notification occurs; and storing preference information of the user for the application or the keyword based on the feedback. Also, other embodiments are possible.
Abstract:
An artificial intelligence system and method are disclosed herein. The system includes a processor which implements the method, including: receiving by an input unit a first user input including a request to execute a task using at least one of the electronic device or an external device, transmitting by a wireless communication unit first data associated with the first user input to an external server, receiving a first response from the external server including information associated with at least one of the first user input and a sequence of electronic device states for performing at least a portion of the task, receiving a second user input assigning at least one of a voice command and a touch operation received by a touch screen display as the request to perform the task, and transmitting second data associated with the second user input to the external server.
Abstract:
An electronic device, a method of operating an electronic device, and a non-transitory computer readable recording medium are provided. The electronic device includes a memory configured to store at least one piece of content, and a processor configured to recognize an attribute corresponding to the at least one piece of content and to control an operation of the electronic device based on a basis of attribute information while the at least one piece of content is reproduced. The method includes recognizing an attribute corresponding to content to be reproduced; acquiring effect information corresponding to the attribute corresponding to the content; and applying the acquired effect information to a reproducing screen of the content. The non-transitory computer readable recording medium includes recognizing an attribute corresponding to content to be reproduced; acquiring effect information corresponding to the attribute corresponding to the content; and applying the acquired effect information to a reproducing screen of the content.