Abstract:
A signal processing apparatus includes a first electrical signal generator configured to generate a first electrical signal, a second electrical signal generator configured to generate a second electrical signal based on a voltage signal output from a variable impedance unit, and a multiplexer configured to selectively supply the first electrical signal and the second electrical signal to the variable impedance unit.
Abstract:
An apparatus for measuring bio-signals is provided. According to an example embodiment, the apparatus for measuring bio-signals includes: a light source configured to emit light onto an object; an image sensor including: a pixel array configured to detect the light emitted by the light source and reacted by the object and a pixel binning unit configured to bin data of the light, detected by the pixel array, by using at least two different binning sizes; and a processor configured to acquire a plurality of bio-signals respectively based on data of the at least two different binning sizes, which are output from the image sensor.
Abstract:
A method of calculating an amount of exercise performed includes measuring noise based on a relative difference in displacement between a skin of a user and a sensor attached to the skin of the user, and determining a number of steps taken by the user based on the measured noise.
Abstract:
A bio impedance measurement apparatus includes a current applicator configured to provide, to terminals contacting a body, a current based on a first control signal, and a modulator configured to modulate a voltage generated as the current flows through the body, based on a second control signal. The apparatus further includes an amplifier configured to amplify the modulated voltage, and a demodulator configured to demodulate the amplified voltage based on a third control signal.
Abstract:
A method of monitoring a biosignal includes receiving a biosignal and a reference signal, determining a signal state of the biosignal based on the reference signal, and analyzing the biosignal using an analysis technique having a resource consumption depending on the signal state.
Abstract:
An apparatus for measuring bio-signals is provided. According to an example embodiment, the apparatus for measuring bio-signals includes: a light source configured to emit light onto an object; an image sensor including: a pixel array configured to detect the light emitted by the light source and reacted by the object and a pixel binning unit configured to bin data of the light, detected by the pixel array, by using at least two different binning sizes; and a processor configured to acquire a plurality of bio-signals respectively based on data of the at least two different binning sizes, which are output from the image sensor.
Abstract:
A method and device to monitor and analyze a biosignal are provided. The device may measure a biosignal from a user of the device, analyze an emotion event associated with the user of the device based on the biosignal, and generate a control command in response to a result of analyzing the emotion event. The generated control command may be used to control an external device.
Abstract:
A biosignal apparatus is described including an amplifier and a sampler. The amplifier is configured to alternate between an operating state and a low power state based on a periodically changing control signal. The sampler is configured to sample a signal output from the amplifier in response to the amplifier being in the operating state and maintain the sampled signal in response to the amplifier being in the low power state.
Abstract:
Provided is a delta-sigma modulator having a differential output, the modulator including a switched-capacitor integrator configured to generate a non-inverted integral signal and an inverted integral signal and also including a switched-capacitor circuit configured to sample an input signal based on a control signal and to integrate the feedback signal and the input signal based on the control signal and also a feedback circuit configured to generate the feedback signal.
Abstract:
An assembly for measuring bio-information includes a finger contact interface configured to move based on a contact force applied by a finger of a user to the finger contact interface; a bio-sensor configured to measure the bio-information of the user based on the finger being in contact with the finger contact interface; a force sensor configured to measure the contact force of the finger applied to the finger contact interface; and a support configured to guide movement of the finger contact interface and support the force sensor against the finger contact interface.