Abstract:
A fluid analysis cartridge with improved test reliability and an associated fluid analysis cartridge assembly are disclosed herein. A fluid analysis cartridge assembly includes a sample collecting member having a sample collecting chamber and a fluid analysis cartridge configured to be connected to the sample collecting member. The fluid analysis cartridge includes a sample receiving chamber configured to receive a sample collected by the sample collecting member and at least one hole arranged on one side of the sample receiving chamber and opened by connection of the sample collecting member to the fluid analysis cartridge to the at least one hole. The sample receiving chamber stores a buffer solution to be mixed with the sample.
Abstract:
A testing apparatus and control method thereof are provided. The testing apparatus includes a detector configured to measure optical characteristic values on a control line and a test line formed on a reactor; and a controller configured to obtain an optical characteristic value measured, by the detector, on the control line, determine a reaction time corresponding to the optical characteristic value measured on the control line based on predetermined reaction time information, and determine a measurement time at which the detector is to measure another optical characteristic value on the test line based on the reaction time that is determined
Abstract:
A method of manufacturing a semiconductor light emitting device, includes: forming a plurality of concave portions on a substrate; injecting silica particles into the plurality of concave portions; and forming a semiconductor layer on the substrate, the semiconductor layer including voids formed in portions of the semiconductor layer, the portions being located above the plurality of concave portions.
Abstract:
A sample analysis cartridge and a sample analysis apparatus having the sample analysis cartridge are provided. The sample analysis cartridge includes a housing having a sample injecting hole and a strip coupled with the housing such that a sample that is passed through the sample injecting hole is directed into the strip, and the strip is configured to detect a target material from the sample through an antigen-antibody reaction. The strip includes a membrane including a test line and a transparent cover disposed outside the membrane.
Abstract:
A simulation system is provided. The simulation system comprises a processor, and a storage to store a simulation program that, when executed by the processor, causes the processor to, use a finite difference method (FDM) to calculate heat energy data generated by light energy provided to a simulation domain, receive the calculated heat energy data and use a finite-element method (FEM) to calculate temperature change data of the simulation domain over time and calculate phase change data of the simulation domain over time, and calculate a silicon loss of the simulation domain using the calculated temperature change data and the calculated phase change.
Abstract:
A method of fabricating a semiconductor light emitting device includes forming a first conductivity type semiconductor layer, forming an active layer by alternately forming a plurality of quantum well layers and a plurality of quantum barrier layers on the first conductivity type semiconductor layer, and forming a second conductivity type semiconductor layer on the active layer. The plurality of quantum barrier layers include at least one first quantum barrier layer adjacent to the first conductivity type semiconductor layer and at least one second quantum barrier layer adjacent to the second conductivity type semiconductor layer. The forming of the active layer includes allowing the at least one first quantum barrier layer to be grown at a first temperature and allowing the at least one second quantum barrier layer to be grown at a second temperature lower than the first temperature.
Abstract:
Disclosed herein is a microfluidic device, which includes a platform, at least one chamber provided in the platform to accommodate a sample, and at least one channel configured to couple the chambers to each other. The at least one chamber includes a detection chamber configured to detect the sample, and the microfluidic device further includes a light blocking portion configured to prevent external light from entering the detection chamber so as to prevent occurrence of errors in detection of the sample in the detection chamber. The microfluidic device can be useful for preventing the occurrence of detection errors which might otherwise be caused by interference of external light. The microfluidic device may also be useful for reducing an inspection time and for miniaturizing microfluidic devices. Further, the microfluidic device may be useful for preventing contaminants from entering the detection chamber.