Abstract:
Methods of fabricating semiconductor devices may include forming a stopper layer, a lower hard mask layer, an intermediate hard mask layer, and an upper hard mask pattern on a substrate, forming first spacer patterns on sidewalls of the upper hard mask pattern, selectively etching the intermediate hard mask layer using the first spacer patterns as an etching mask, forming second spacer patterns on sidewalls of the etched intermediate hard mask layer, selectively etching the lower hard mask layer using the etched second spacer layer as an etching mask, forming a patterning mask pattern that exposes a cell area and covers a common source line area on the etched lower hard mask layer and the stopper layer, and selectively etching the stopper layer using the etched lower hard mask layer and the patterning mask pattern as etching masks to form stopper patterns.
Abstract:
The inventive concepts provide methods for fabricating a semiconductor device and semiconductor devices fabricated by the same. According to the method, conductive lines having a fine pitch smaller than the minimum pitch realized by an exposure process may be formed using two or three photolithography processes and two spacer formation processes. In addition, node separation regions of the conductive lines may be easily formed without a misalignment problem.
Abstract:
The inventive concepts provide methods for fabricating a semiconductor device and semiconductor devices fabricated by the same. According to the method, conductive lines having a fine pitch smaller than the minimum pitch realized by an exposure process may be formed using two or three photolithography processes and two spacer formation processes. In addition, node separation regions of the conductive lines may be easily formed without a misalignment problem.
Abstract:
In a non-volatile memory device and method of manufacturing the same, a device isolation pattern and an active region extend in a first direction on a substrate. A first dielectric pattern is formed on the active region of the substrate. Conductive stack structures are arranged on the first dielectric pattern and a recess is formed between a pair of the adjacent conductive stack structures. A protection layer is formed on a sidewall of the stack structure to protect the sidewall of the stack structure from over-etching along the first direction. The protection layer includes an etch-proof layer having oxide and arranged on a sidewall of the floating gate electrode and a sidewall of the control gate line and a spacer layer covering the sidewall of the conductive stack structures.