Abstract:
Semiconductor device, method for fabricating the same and electronic devices including the semiconductor device are provided. The semiconductor device comprises an interlayer insulating layer formed on a substrate and including a trench, a gate electrode formed in the trench, a first gate spacer formed on a side wall of the gate electrode to have an L shape, a second gate spacer formed on the first gate spacer to have an L shape and having a dielectric constant lower than that of silicon nitride, and a third spacer formed on the second gate spacer.
Abstract:
Semiconductor device, method for fabricating the same and electronic devices including the semiconductor device are provided. The semiconductor device comprises an interlayer insulating layer formed on a substrate and including a trench, a gate electrode formed in the trench, a first gate spacer formed on a side wall of the gate electrode to have an L shape, a second gate spacer formed on the first gate spacer to have an L shape and having a dielectric constant lower than that of silicon nitride, and a third spacer formed on the second gate spacer.
Abstract:
An image sensor includes a photoelectric converter in a pixel area of a substrate to generate photoelectrons in response to an incident light that is incident onto the pixel area, a signal generator on a first surface of the substrate in the pixel area to generate electric signals corresponding to image information of an object in accordance with the photoelectrons, and a pixel separation pattern penetrating through the substrate from the first surface of the substrate to a second surface of the substrate opposite to the first surface of the substrate, the pixel separation pattern including an insulation pattern having a refractive index smaller than that of the substrate and a metallic conductive pattern enclosed by the insulation pattern, and the pixel area being enclosed by the pixel separation pattern and isolated from a neighboring pixel area.
Abstract:
A dummy gate electrode layer and a dummy gate mask layer may be formed on a substrate. The dummy gate mask layer may be patterned to form a dummy gate mask so that a portion of the dummy gate electrode layer is exposed. Ions may be implanted into the exposed portion of the dummy gate electrode layer and a portion of the dummy gate electrode layer adjacent thereto by an angled ion implantation to form a growth blocking layer in the dummy gate electrode layer. The dummy gate electrode layer may be etched using the dummy gate mask as an etching mask to form a dummy gate electrode. A spacer may be formed on side surfaces of a dummy gate structure including the dummy gate electrode and the dummy gate mask. An SEG process may be performed to form an epitaxial layer.
Abstract:
A dummy gate electrode layer and a dummy gate mask layer may be formed on a substrate. The dummy gate mask layer may be patterned to form a dummy gate mask so that a portion of the dummy gate electrode layer is exposed. Ions may be implanted into the exposed portion of the dummy gate electrode layer and a portion of the dummy gate electrode layer adjacent thereto by an angled ion implantation to form a growth blocking layer in the dummy gate electrode layer. The dummy gate electrode layer may be etched using the dummy gate mask as an etching mask to form a dummy gate electrode. A spacer may be formed on side surfaces of a dummy gate structure including the dummy gate electrode and the dummy gate mask. An SEG process may be performed to form an epitaxial layer.