Abstract:
A semiconductor package includes a first, second, third and fourth semiconductor chips sequentially stacked on one another. The second semiconductor chip includes a second substrate and a second substrate recess formed in an edge of a backside surface of the second substrate. The third semiconductor chip includes a third substrate and a first metal residual material provided in a peripheral region of a front surface of the third substrate. When the second semiconductor chip and the third semiconductor chip are bonded to each other such that the front surface of the third substrate and the backside surface of the second substrate face each other, the first metal residual material is located in the second substrate recess. A first bonding pad on the backside surface of the second substrate and a second bonding pad on the front surface of the third substrate are bonded to each other.
Abstract:
A host device includes: a data management module for receiving exercise data from an electronic device; a group management module for generating a group requiring preset conditions and determining whether to include the electronic device in the group based on whether the exercise data of the electronic device received from the data management module meets the conditions; and a league management module for, when the number of generated groups is two or more, controlling a configuration of the two or more groups based on a result of the determination on whether one or more electronic devices included in each of the two or more groups meet conditions required by the group whenever a preset period elapses.
Abstract:
Provided is a method of detecting a defective layer. A method, performed by a computing system, of detecting a defective layer of a semiconductor device including a plurality of layers includes obtaining candidate defective layer information regarding a plurality of candidate defective layers and obtaining physical structure information regarding the candidate defective layers, dividing each of wires in the candidate defective layers into virtual micro areas based on the candidate defective layer information and based on the physical structure information, and identifying a defective layer from among the candidate defective layers according to a number of the virtual micro areas.
Abstract:
A three-dimensional semiconductor device including a conductive layer disposed on a substrate and including a first conductivity-type impurity; an insulating base layer disposed on the conductive layer; a stack structure including a lower insulating film disposed on the insulating base layer, and a plurality of gate electrodes and a plurality of mold insulating layers alternately stacked on the lower insulating film, wherein the insulating base layer includes a high dielectric material; a vertical structure including a vertical channel layer penetrating through the stack structure and a vertical insulating layer disposed between the vertical channel layer and the plurality of gate electrodes, the vertical structure having an extended area extending in a width direction in the insulating base layer; and an isolation structure penetrating through the stack structure, the insulating base layer and the conductive layer, and extending in a direction parallel to an upper surface of the substrate, wherein the conductive layer has an extension portion extending along a surface of the vertical channel layer in the extended area of the vertical structure.
Abstract:
A three-dimensional semiconductor device including a conductive layer disposed on a substrate and including a first conductivity-type impurity; an insulating base layer disposed on the conductive layer; a stack structure including a lower insulating film disposed on the insulating base layer, and a plurality of gate electrodes and a plurality of mold insulating layers alternately stacked on the lower insulating film, wherein the insulating base layer includes a high dielectric material; a vertical structure including a vertical channel layer penetrating through the stack structure and a vertical insulating layer disposed between the vertical channel layer and the plurality of gate electrodes, the vertical structure having an extended area extending in a width direction in the insulating base layer; and an isolation structure penetrating through the stack structure, the insulating base layer and the conductive layer, and extending in a direction parallel to an upper surface of the substrate, wherein the conductive layer has an extension portion extending along a surface of the vertical channel layer in the extended area of the vertical structure.
Abstract:
A shielding member is provided. The shielding member includes a shielding layer having flexibility, and an insulating layer stacked on the shielding layer. The shielding layer includes a nanofiber layer including nanofibers plated to have electrical conductivity and coated with an adhesive material, and conductive particles disposed in the nanofiber layer.
Abstract:
A host device includes: a data management module for receiving exercise data from an electronic device; a group management module for generating a group requiring preset conditions and determining whether to include the electronic device in the group based on whether the exercise data of the electronic device received from the data management module meets the conditions; and a league management module for, when the number of generated groups is two or more, controlling a configuration of the two or more groups based on a result of the determination on whether one or more electronic devices included in each of the two or more groups meet conditions required by the group whenever a preset period elapses.
Abstract:
A method of searching for a contact number by a host device is provided. The method includes receiving a signal for requesting vehicle data of a first mobile station and a location value of a second mobile station; receiving a location value and flag information of the first mobile station; determining the location value of the first mobile station based on the flag information; determining whether a difference between the determined location value of the first mobile station and the location value of the second mobile station is less than or equal to a predetermined threshold location value; extracting the vehicle data of the first mobile station based on the determination result as to whether the difference is less than or equal to the predetermined threshold location; and transmitting the extracted vehicle data of the first mobile station.
Abstract:
A method of searching for a contact number by a host device is provided. The method includes receiving a signal for requesting vehicle data of a first mobile station and a location value of a second mobile station; receiving a location value and flag information of the first mobile station; determining the location value of the first mobile station based on the flag information; determining whether a difference between the determined location value of the first mobile station and the location value of the second mobile station is less than or equal to a predetermined threshold location value; extracting the vehicle data of the first mobile station based on the determination result as to whether the difference is less than or equal to the predetermined threshold location; and transmitting the extracted vehicle data of the first mobile station.
Abstract:
A vertical semiconductor device may include a stacked structure, a channel structure and a lower connection structure. The stacked structure may include insulation layers and gate electrodes alternately repeatedly stacked. The stacked structure may be spaced apart from an upper surface of a substrate. The channel structure may include a charge storage structure and a channel. The channel structure may pass through the stacked structure. The lower connection structure may be formed on the substrate. The lower connection structure may be electrically connected with the channel and the substrate. A sidewall of the lower connection structure may include a protrusion disposed at a central portion of the sidewall from the upper surface of the substrate in a vertical direction. The vertical semiconductor device may have a high reliability.