Abstract:
A film-type semiconductor package includes a metal lead portion arranged on a film substrate, a semiconductor chip including a pad, and a bump connecting the metal lead portion to the pad of the semiconductor chip. The bump includes a metal pillar arranged on the pad and including a first metal and a soldering portion arranged on an entire surface of the metal pillar, bonded to the metal lead portion, and including the first metal and a second metal that is different from the first metal.
Abstract:
An X-ray apparatus includes an X-ray radiator configured to radiate an X-ray, and a controller acquiring orientation information of the X-ray radiator and orientation information of at least one X-ray detector, selecting the at least one X-ray detector based on the orientation information of the X-ray radiator and the orientation information of the at least one X-ray detector, and determining a power mode of the selected X-ray detector to be a power consumption mode and a power mode of an X-ray detector that is not selected, to be a power save mode.
Abstract:
The touch sensing apparatus includes a driving unit and a touch sensing unit, a scan region selecting unit, and a control unit. The driving unit and the touch sensing unit arranged at a touch panel are electrically connected to driving electrodes and sensing electrodes, respectively. The scan region selecting unit controls the driving unit and determines a narrowed scan region including a touched location by dividing a touch region of the touch panel into a plurality of scan regions, scanning each of the scan regions, and selecting a scan region including the touched location at least for once. The control unit controls the scan region selecting unit and the driving unit and determines the narrowed scan region including the touched location and sense the touched location by inputting signals in a time-division manner to a plurality of scan lines included in the narrowed scan region.
Abstract:
A flat panel display device including a display area where an image is displayed and a non-display area located at an outside of the display area includes bank portions arranged in a pattern in the display area and partitioning a plurality of openings, emission elements located in the openings, dummy bank portions formed in the non-display area and integrated therewith, and a sealing passivation layer having a multi-layered structure of organic films and inorganic films alternately arranged, one organic film being located at an interface directly contacting the emission element and one inorganic film located firstly on an outermost portion of the dummy bank portions when the sealing passivation layer extends from the display area to the non-display area.
Abstract:
Provided is an image sensor having a hybrid pixel structure in which pixels that sense visible light and pixels that sense ultraviolet light or infrared light are arranged together. For example, the image sensor includes a plurality of first pixels and a plurality of second pixels that are different in size. A width of each of the plurality of second pixels in a horizontal direction is a first integer multiple of a width of each of the plurality of first pixels in the horizontal direction, and a width of each of the plurality of second pixels in a vertical direction is a second integer multiple of a width of each of the plurality of first pixels in the vertical direction. The image sensor enables the pixels sensing ultraviolet light or infrared light, which have different sizes from the pixels sensing visible light, to be efficiently arranged together with the pixels sensing visible light, on the same substrate.
Abstract:
Provided are a chip-on-film (COF) semiconductor package capable of improving connection characteristics and a display apparatus including the package. The COF semiconductor package includes a film substrate, a conductive interconnection located on at least one surface of the film substrate and an output pin connected to the conductive interconnection and located at one edge on a first surface of the film substrate, a semiconductor chip connected to the conductive interconnection and mounted on the first surface of the film substrate, a solder resist layer on the first surface of the film substrate to cover at least a portion of the conductive interconnection, and at least one barrier dam on the solder resist layer between the semiconductor chip and the output pin.
Abstract:
A pixel of a display apparatus includes at least a first transistor and at least a second transistor. A cell of transparent fluid including particles charged to have different polarities from each other is arranged between a pixel electrode and a common electrode. The first and second transistors are connected to the pixel electrode. The pixel is drivable according to pulse amplitude modulation (PAM) and pulse width modulation (PWM) such that a frame of an image is displayable using a single field.
Abstract:
A glasses-type display includes: a lens unit configured to selectively reflect light of different wavelength bands, the lens unit including a plurality of photonic crystal pattern units, each of the plurality of photonic crystal pattern units including pixels; a leg unit coupled to the lens unit; and an image supply unit configured to supply an image to the lens unit.
Abstract:
A film-type semiconductor package includes a metal lead portion arranged on a film substrate, a semiconductor chip including a pad, and a bump connecting the metal lead portion to the pad of the semiconductor chip. The bump includes a metal pillar arranged on the pad and including a first metal and a soldering portion arranged on an entire surface of the metal pillar, bonded to the metal lead portion, and including the first metal and a second metal that is different from the first metal.
Abstract:
Provided is a monitoring device that comprises; a port connected to a network interconnecting a plurality of units of an X-ray apparatus, and configured to transmit or receive data to or from each of the plurality of units; and a controller configured to control the port to perform communication with each of the plurality of units, and to monitor operational states of the plurality of units, based on the data.