Abstract:
A semiconductor device includes an integrator, a successive approximation register analog-to-digital converter (SAR ADC) and a residue capacitor. The integrator is configured to receive a signal and generate a first analog signal during a first operation mode using a capacitor module comprising one or more capacitors. The SAR ADC is configured to receive the first analog signal, convert the first analog signal into a first digital signal using the capacitor module, and generate a first residue signal in a second operation mode. The residue capacitor is connected to the capacitor module in parallel, and is configured to receive the first residue signal in the second operation mode and provide the first residue signal to the integrator in the first operation mode.
Abstract:
A fingerprint sensor includes a pixel array, an offset cancellation circuit, a correlated double sampling and integration circuit, a sample and hold circuit, and an analog-to-digital converter. The pixel array includes unit pixels arranged in rows and columns, each of which generates an analog signal by detecting a fingerprint of a user. The offset cancellation circuit receives the analog signal from the unit pixels through a plurality of column lines, and outputs one of the analog signal and an offset cancellation signal as an integration signal based on an offset control signal. The correlated double sampling and integration circuit accumulatively performs a correlated double sampling operation and an integration operation on the integration signal to generate an accumulation signal. The sample and hold circuit samples the accumulation signal based on a hold signal to generate a sampling signal. The analog-to-digital converter converts the sampling signal to a digital signal.
Abstract:
An apparatus includes a sample holding circuit, a comparator, a digital-to-analog converter, a clock generator, a successive approximation logic circuit, and a background calibration circuit. The apparatus converts an analog signal into digital data based on an asynchronous clock signal. The clock signal follows the number of clocks in a converting operation section through a background calibration scheme.
Abstract:
A method for controlling a first electronic device communicating with a second electronic device is provided. The method includes connecting to the second electronic device, receiving a request to use data stored in the second electronic device from a first application, determining whether to permit to use the data, and, if permitted to use the data, controlling the first application to use the data.
Abstract:
A fingerprint sensor, comprising: a pixel array including a plurality of unit pixels arranged in rows and columns, each of the plurality of unit pixels including: a sensing electrode configured to form a detection capacitor; and a signal generation circuit configured to generate an analog signal based on a capacitance of the detection capacitor; and a controller configured to control an operation of the pixel array, wherein the controller is configured to electrically connect sensing electrodes of at least two unit pixels adjacent to each other and activate only one of the signal generation circuits included in the at least two unit pixels to generate the analog signal.
Abstract:
A fingerprint sensor includes a pixel array, an offset cancellation circuit, a correlated double sampling and integration circuit, a sample and hold circuit, and an analog-to-digital converter. The pixel array includes unit pixels arranged in rows and columns, each of which generates an analog signal by detecting a fingerprint of a user. The offset cancellation circuit receives the analog signal from the unit pixels through a plurality of column lines, and outputs one of the analog signal and an offset cancellation signal as an integration signal based on an offset control signal. The correlated double sampling and integration circuit accumulatively performs a correlated double sampling operation and an integration operation on the integration signal to generate an accumulation signal. The sample and hold circuit samples the accumulation signal based on a hold signal to generate a sampling signal. The analog-to-digital converter converts the sampling signal to a digital signal.
Abstract:
An analog-to-digital converter includes a digital-to-analog converting circuit, a comparator, a comparator offset detector, and a signal processing circuit. The digital-to-analog converting circuit generates a reference voltage signal that changes in response to a comparator offset compensation signal, samples and holds an analog input signal, and performs a digital-to-analog conversion on digital output data to generate a hold voltage signal. The comparator compares the hold voltage signal with the reference voltage signal in response to a clock signal to generate a comparison output voltage signal. The comparator offset detector generates the comparator offset compensation signal based on the comparison output voltage signal. The signal processing circuit performs successive approximation based on the comparison output voltage signal to generate the digital output data.
Abstract:
A first electronic device is provided. The first electronic device includes a transceiver, and a processor configured to encrypt a part of information related to a second communication based on information related to a first communication performed between the first electronic device and a second electronic device and control the transceiver to transmit information related to the second communication to the second electronic device through the transceiver.
Abstract:
A programmable gain amplifier (PGA) circuit includes a first input resistor coupled between a first input node and a first summing node and a second input resistor coupled between a second input node and a second summing node. The PGA circuit further includes a first variable reference resistor coupled between a third input node and the first summing node, a second variable reference resistor coupled between a fourth input node and the second summing node, and an operational amplifier having first and second inputs coupled to respective ones of the first and second summing nodes and first and second outputs coupled to respective ones of the first and second output nodes. At least of the first and second reference resistors may include an R-2R ladder circuit.