Abstract:
Disclosed is a fan-out buffer which includes a first channel that includes a first delay circuit adjusting a first delay time of a calibration test signal depending on a first delay control signal, a second channel that includes a second delay circuit adjusting a second delay time of the calibration test signal depending on a second delay control signal, a first edge-to-pulse converter that detects a first edge included in a first time domain reflectometry (TDR) waveform of an output terminal of the first channel and generates a first start pulse signal including a first pulse, a second edge-to-pulse converter that generates a second start pulse signal including a second pulse, a stop pulse signal generator that generates a stop pulse signal including a first stop pulse, and a first delay control signal generator that calculates a phase difference generates the first delay control signal.
Abstract:
Disclosed are a semiconductor device and a method of manufacturing the same. The semiconductor device includes first and second logic cells adjacent to each other in a first direction on a substrate, a gate electrode extending in the first direction in each of the first and second logic cells, a power line extending in a second direction at a boundary between the first and second logic cells, and a connection structure electrically connecting the power line to an active pattern of the first logic cell and to an active pattern of the second logic cell. The connection structure lies below the power line and extends from the first logic cell to the second logic cell. A top surface of the connection structure is at a higher level than that of a top surface of the gate electrode.
Abstract:
A semiconductor device may include active fins each of which extends in a first direction on a substrate, the active fins being spaced apart from each other in a second direction different from the first direction, a conductive structure extending in the second direction on the substrate, the conductive structure contacting the active fins, a first diffusion break pattern between the substrate and the conductive structure, the first diffusion break pattern dividing a first active fin of the active fins into a plurality of pieces aligned in the first direction, and a second diffusion break pattern adjacent to the conductive structure on the substrate, the second diffusion break pattern having an upper surface higher than a lower surface of the conductive structure, and dividing a second active fin of the active fins into a plurality of pieces aligned in the first direction.
Abstract:
According to example embodiments, a wire structure includes a first wire that includes a first wire core and a first carbon shell surrounding the first wire core, and a second wire that extends in a longitudinal direction from the first wire. The first wire core has a wire shape. The first carbon shell contains carbon.