Abstract:
A liquid crystal display includes: a lower display panel including a lower polarizing plate disposed between a lower transparent substrate and a passivation layer of the lower display panel; and an upper display panel including an upper polarizing plate disposed between an upper transparent substrate and a passivation layer of the upper display panel, wherein at least one of the lower polarizing plate and the upper polarizing plate is a reflection type polarizing plate and includes a plurality of linear patterns arranged so as to be extended in one direction and a hydrophobic layer covering at least portion of side wall portions of the linear patterns.
Abstract:
A laser crystallization measuring apparatus including a spectrometer configured to measure actual data of a spectrum of an actual polycrystalline silicon layer crystallized by a laser crystallization device, and a simulation device that is connected to the spectrometer and is configured to determine simulation data of a spectrum of a virtual polycrystalline silicon layer according to a shape of a virtual protrusion formed in the virtual polycrystalline silicon layer, wherein a shape of an actual protrusion formed in the actual polycrystalline silicon layer is determined by using final data determined by selecting simulation data that is approximate to the actual data.
Abstract:
A liquid crystal display includes: a lower display panel including a lower polarizing plate disposed between a lower transparent substrate and a passivation layer of the lower display panel; and an upper display panel including an upper polarizing plate disposed between an upper transparent substrate and a passivation layer of the upper display panel, wherein at least one of the lower polarizing plate and the upper polarizing plate is a reflection type polarizing plate and includes a plurality of linear patterns arranged so as to be extended in one direction and a hydrophobic layer covering at least portion of side wall portions of the linear patterns.
Abstract:
A manufacturing method of a reflective polarizer includes forming a metal layer on a first substrate; forming a mask layer divided into an opening area and a non-opening area on the metal layer, and having grooves patterned in the opening area, the groove exposing the metal layer; increasing hydrophobicity of a surface by treating the mask layer using a silane coupling agent; inducing phase separation of a hydrophilic component and a hydrophobic component of a block copolymer after filling the grooves of the mask layer with the block copolymer; selectively removing the hydrophilic component or the hydrophobic component block copolymer of the block copolymer; and etching the metal layer using the block copolymer as a mask.
Abstract:
A display panel inspection system includes a camera to image respective frames of a mother substrate in a frame-by-frame manner, a stage to move the mother substrate relative to the camera, an image obtaining unit to store frames imaged by the camera, a gray level extracting unit that obtains gray level values of the frames, a frame matching unit that searches and matches two frames that match each other among the frames imaged by the camera, a correcting unit that performs correction on one of two frames matched with each other in consideration of an alignment error and an image distortion between the two frames, and a comparing unit that compares the gray level values of the two frames matched with each other, after the correction.
Abstract:
A method for manufacturing a display device includes preparing a target panel including a first substrate and a second substrate disposed on one surface of the first substrate, the target panel including a sealing area between the first substrate and the second substrate, making sealing light be incident in the sealing area and receiving at least a part of the sealing light reflected from the sealing area, generating first data including at least one parameter of intensity, energy, current, and voltage, and determining whether sealing is defective by comparing the first data and prestored second data.
Abstract:
A thin film transistor array panel includes a first insulating substrate, a gate electrode positioned on the first insulating substrate, a gate insulating layer positioned on the gate electrode, a semiconductor layer positioned on the gate insulating layer, and a source electrode and a drain electrode positioned on the semiconductor layer and spaced apart from each other, in which the semiconductor layer includes three or more amorphous silicon layers having different bandgap energies from one another in order to reduce a leakage current and improve performance of a liquid crystal display.
Abstract:
A thin film transistor array panel includes a first insulating substrate, a gate electrode positioned on the first insulating substrate, a gate insulating layer positioned on the gate electrode, a semiconductor layer positioned on the gate insulating layer, and a source electrode and a drain electrode positioned on the semiconductor layer and spaced apart from each other, in which the semiconductor layer includes three or more amorphous silicon layers having different bandgap energies from one another in order to reduce a leakage current and improve performance of a liquid crystal display.
Abstract:
An inspecting device of a display panel includes a contact including first probe pins that contact to data pads of a display panel and second probe pins that contact to common voltage pads of the display panel, a signal generator coupled to the first probe pins, the signal generator configured to generate a first data voltage corresponding to a first gray level and a second data voltage corresponding to a second gray level, a power generator coupled to the second probe pins, the power generator configured to generate a first common voltage and a second common voltage of which a voltage level is different from a voltage level of the second common voltage, and a defect detector configured to detect a defect of the display panel by removing a contact noise generated due to contact failure of the first probe pins and the second probe pins.
Abstract:
A thin film transistor includes a gate electrode, a semiconductor layer, a source electrode, and a drain electrode. The semiconductor layer overlaps the gate electrode and includes a channel layer comprising an oxide semiconductor and an auxiliary layer comprising amorphous silicon. The source electrode and the drain electrode are separated from each other and connected to the semiconductor layer. A thin film transistor array panel and method of manufacturing same also is disclosed.