Abstract:
A thin film transistor substrate according to an exemplary embodiment of the present invention includes a semiconductor layer including metal disposed on an insulating substrate, a gate electrode overlapping the semiconductor layer, and a source electrode and a drain electrode overlapping the semiconductor layer, wherein the metal in the semiconductor layer comprises indium (In), zinc (Zn), and tin (Sn), and a molar ratio (R, R[mol %]=[In]/[In+Zn+Sn]/100) of indium (In) to the metals in the semiconductor layer is less than about 20%, and more specifically, the molar ratio (R, R[mol %]=[In]/[In+Zn+Sn]/100) of indium (In) of the metals in the semiconductor layer is about 5% to about 13%.
Abstract:
A thin film transistor includes a gate electrode, a semiconductor layer, and source and drain electrodes contacting the semiconductor layer. The source and drain electrodes include a metal oxide having a crystal size in a c-axis direction Lc(002) that ranges from 67 Å or more to 144 ∈ or less.
Abstract:
A thin-film transistor array panel includes a gate line disposed on a first substrate, the gate line including a gate electrode, a semiconductor layer disposed on the first substrate, the semiconductor layer including an oxide semiconductor, a data wire layer disposed on the first substrate, the data wire layer including a data line crossing the gate line, a source electrode connected to the data line, and a drain electrode facing the source electrode, a capping layer disposed on the data wire layer, a tilt layer disposed on the capping layer, and a passivation layer disposed on the tilt layer, in which the tilt layer includes a silsesquioxane-based copolymer.
Abstract:
A thin film transistor including a gate electrode, a semiconductor layer, and source and drain electrodes contacting the semiconductor layer. The source and drain electrodes include a metal oxide having a crystal size in a c-axis direction Lc(002) that ranges from 67 Å or more to 144 Å or less.
Abstract:
A display device includes a reflective layer on a first electrode, the reflective layer including silver or a silver alloy, an inorganic layer on the reflective layer, the inorganic layer having a work function that is lower than that of the reflective layer, an emission layer on the inorganic layer, an organic layer on the emission layer, and a second electrode on the organic layer.
Abstract:
An organic light-emitting diode (OLED) display device includes a substrate; a transistor device disposed on the substrate; a first electrode electrically connected to the transistor device; an organic light-emitting layer disposed on the first electrode; and a second electrode disposed on the organic light-emitting layer. The OLED display device further includes a transflective layer contacting a lower surface of the first electrode and having a relatively higher refractive index than the first electrode.
Abstract:
An exemplary embodiment provides a color conversion display panel including: a substrate including a display area and a light-blocking area; a metal oxide layer disposed on the substrate to overlap the display area and the light-blocking area; a reflective metal layer disposed on the metal oxide layer to overlap the light-blocking area; a color conversion layer disposed on the metal oxide layer which overlaps the display area to include semiconductor nanocrystals; and a transmission layer disposed on the metal oxide layer which overlaps the display area.
Abstract:
A wire grid polarizer plate includes a transparent substrate, metal partition walls and metal oxide partition walls. The metal partition walls are disposed on the transparent substrate and spaced apart from one another. The metal partition walls includes at least one metal selected from aluminum (Al), titan (Ti), molybdenum (Mo), chrome (Cr), silver (Ag), copper (Cu), nickel (Ni) and cobalt (Co). The metal oxide partition walls are disposed on the metal partition walls. The metal oxide partition walls includes an oxide of the at least one metal. An average of surface roughness of the wire grid polarizer plate is about 4 nm or less when a thickness of the metal oxide partition walls is equal to about 300 Å.
Abstract:
A display device and a method of manufacturing the display device are provided. According to an exemplary embodiment, a display device includes: a substrate; a gate electrode disposed on the substrate; a semiconductor pattern disposed on the gate electrode; data wiring disposed on the semiconductor pattern and having a data line, a source electrode, and a drain electrode; a first barrier layer disposed between the data wiring and the semiconductor pattern; and undercuts disposed on at least one side of each segment of the first barrier layer.
Abstract:
A display device includes a gate line, a data line crossing the gate line, and a first transistor including a gate electrode electrically coupled to the gate line and a first electrode electrically coupled to the data line. At least one of the gate electrode of the first transistor, the first electrode of the first transistor, and a second electrode of the first transistor includes at least one of a first conductor layer and a second conductor layer. The first conductor layer includes a first metal layer and a second metal layer disposed on the first metal layer. The second conductor layer includes a third metal layer and a fourth metal layer disposed on the third metal layer. The second metal layer has a lower reflectivity than the first metal layer. The fourth metal layer has a lower reflectivity lower than the third metal layer.