Abstract:
An organic light-emitting display device, which may be configured to prevent moisture or oxygen from penetrating the organic light-emitting display device from the outside is disclosed. An organic light-emitting display device, which is easily applied to a large display device and/or may be easily mass produced is further disclosed. Additionally disclosed is a method of manufacturing an organic light-emitting display device. An organic light-emitting display device may include, for example, a thin-film transistor (TFT) including a gate electrode, an active layer insulated from the gate electrode, source and drain electrodes insulated from the gate electrode and contacting the active layer and an insulating layer disposed between the source and drain electrodes and the active layer; and an organic light-emitting diode electrically connected to the TFT. The insulating layer may include, for example, a first insulating layer contacting the active layer; and a second insulating layer formed of a metal oxide and disposed on the first insulating layer.
Abstract:
A thin film transistor including a gate electrode; an active layer insulated from the gate electrode; a source electrode and a drain electrode that are insulated from the gate electrode and are electrically connected to the active layer; a first etch stopper layer that is formed of an insulation material and contacts a portion of the active layer located between areas of the active layer that are electrically connected to the source electrode and the drain electrode; a second etch stopper layer on the first etch stopper layer, the second etch stopper layer being formed of an insulation material of a same type as the insulation material used to form the first etch stopper layer, the second etch stopper layer having a higher density than the first etch stopper layer; and a third etch stopper layer on the second etch stopper layer.
Abstract:
A method of forming an oxide semiconductor device may be provided. In the method, a substrate comprising a first major surface and a second major surface that faces away from the first major surface may be provided. An oxide semiconductor device may be formed over the first major surface to provide an intermediate device, and the semiconductor device may comprise an oxide active layer. The intermediate device may be subjected to ultraviolet (UV) light (e.g., ultraviolet ray irradiation process) for a first period, and subjected to heat (e.g., thermal treatment process) for a second period. The first and second periods may at least partly overlap.
Abstract:
A pixel circuit and a display device having the pixel circuit are disclosed. One inventive aspect includes a switching thin-film TFT and a light sensing TFT. The switching thin-film TFT includes a first source electrode electrically connected to a data line. A first gate electrode of the switching thin-film TFT and a second source electrode of the light sensing TFT are electrically connected to a first gate line. A first drain electrode of the switching thin-film TFT and a second drain electrode of the light sensing TFT are electrically connected to a pixel electrode.
Abstract:
A method of forming a tin oxide semiconductor thin film includes preparing a precursor solution including a tin oxide semiconductor, coating the precursor solution on a substrate; and performing a heat treatment on the substrate coated with the precursor solution. A tin compound having a different tin valence according to a semiconductor type of the tin oxide semiconductor may be used in the precursor solution.
Abstract:
Provided is a composition for forming tin oxide semiconductor including a tin precursor compound, an antimony precursor compound, and a solvent, according to an aspect of the present disclosure. Also provided is a method of forming a tin oxide semiconductor thin film. The method includes preparing a composition including a tin precursor compound and an antimony precursor compound dissolved in a solvent; disposing the composition on a substrate; and performing a heat treatment on the substrate coated with the composition.
Abstract:
An organic light-emitting display device, which may be configured to prevent moisture or oxygen from penetrating the organic light-emitting display device from the outside is disclosed. An organic light-emitting display device, which is easily applied to a large display device and/or may be easily mass produced is further disclosed. Additionally disclosed is a method of manufacturing an organic light-emitting display device. An organic light-emitting display device may include, for example, a thin-film transistor (TFT) including a gate electrode, an active layer insulated from the gate electrode, source and drain electrodes insulated from the gate electrode and contacting the active layer and an insulating layer disposed between the source and drain electrodes and the active layer; and an organic light-emitting diode electrically connected to the TFT. The insulating layer may include, for example, a first insulating layer contacting the active layer; and a second insulating layer formed of a metal oxide and disposed on the first insulating layer.
Abstract:
A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include source and drain electrodes formed on a substrate; an active layer formed of an oxide semiconductor disposed on the source and drain electrodes; a gate electrode; and an interfacial stability layer formed on at least one of top and bottom surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0 eV. Since the interfacial stability layer has the same characteristics as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.
Abstract:
An organic light-emitting display device, which may be configured to prevent moisture or oxygen from penetrating the organic light-emitting display device from the outside is disclosed. An organic light-emitting display device, which is easily applied to a large display device and/or may be easily mass produced is further disclosed. Additionally disclosed is a method of manufacturing an organic light-emitting display device. An organic light-emitting display device may include, for example, a thin-film transistor (TFT) including a gate electrode, an active layer insulated from the gate electrode, source and drain electrodes insulated from the gate electrode and contacting the active layer and an insulating layer disposed between the source and drain electrodes and the active layer; and an organic light-emitting diode electrically connected to the TFT. The insulating layer may include, for example, a first insulating layer contacting the active layer; and a second insulating layer formed of a metal oxide and disposed on the first insulating layer.