Abstract:
A method of driving an auto-stereoscopic display apparatus includes detecting a position of a user to determine a target visible distance, determining at least one original pixel unit having a first unit width based on the target visible distance, wherein the pixel unit includes a plurality of pixel sets in a row, each pixel set including N pixels, comparing the target visible distance to a predetermined reference visible distance of the auto-stereoscopic display apparatus, and converting the original pixel unit to a compensated pixel unit having a second unit width different from the first unit width to project viewpoint sets through the N pixels to a viewing zone at the target visible distance.
Abstract:
A three-dimensional image display device includes: a display panel which includes a first pixel and a second pixel and displays a frame image including a positive frame image including a first right-eye image and a first left-eye image displayed in the first and second pixels, respectively, and a negative frame image including a second left-eye image and a second right-eye image displayed in the first and second pixels, respectively; and a liquid crystal lens panel disposed on the display panel and which provides the first and second right-eye images to a right eye of a viewer and provides the first and second left-eye images to a left eye of the viewer, where the display panel sequentially displays the positive frame image and the negative frame image during an n-th frame period, and the negative frame image and the positive frame image during an (n+1)-th frame image.
Abstract:
An image display apparatus includes a display panel displaying an image. A switching panel activates a lenticular lens during a three-dimensional mode and deactivate the lenticular lens in a two-dimensional mode by arranging liquid crystal molecules thereof. A pattern retarder is disposed between the display panel and the switching panel and includes a first retarder part converting light emanating from the display panel to a first circularly polarized light and a second retarder part converting the light emanating from the display panel to a second circularly polarized light. The switching panel includes first and second areas respectively corresponding to the first and second retarder parts, and the liquid crystal molecules are rotated in a first direction in the first area and a second direction in the second area.
Abstract:
A three-dimensional image display device including a dot displaying viewpoint images and a viewpoint forming unit. The dot displays first and second color images respectively having first and second colors of a first viewpoint image among the viewpoint images during a first sub-frame, and displays a third color image having a third color of the first viewpoint image during a second sub-frame. The viewpoint forming unit includes viewpoint forming devices, which are positioned at a first position during the first sub-frame to project the first and second color images on a viewing zone corresponding to the first viewpoint image, and positioned at a second position during the second sub-frame to project the third color image on the viewing zone.
Abstract:
An image display apparatus includes a display panel displaying an image, and a switching panel operated in a two-dimensional or three-dimensional mode. A viewer perceives the image of the display panel as a two-dimensional or three-dimensional image depending on the mode of the switching panel. The switching panel may include first and second substrates facing each other, a first electrode layer provided on the first substrate, a second electrode layer provided on the second substrate, and a liquid crystal layer interposed between the first and second substrates. One of the first and second electrode layers may include first and second electrodes provided on a specific plane, and two opposite inner sides of the first and second electrodes may be configured in such a way that lines extending therefrom converge on at least one first position.
Abstract:
A display device includes: a display module including a display area and a non-display area; a protective layer on a lower surface of the display module and including an opening area overlapping with the display area; a sensor unit overlapping with the display area, covering the opening area, and arranged on the protective layer; and an adhesive member adhering the sensor unit and the protective layer.
Abstract:
A display device includes a substrate having a first area, a second area, and a bending area between the first area and the second area. A display element is disposed in the first area of the substrate. A stress neutralizing layer is disposed in the first area, the second area and the bending area. A thickness of the stress neutralizing layer in the bending area is less than a thickness of the stress neutralizing layer in at least one of the first area or the second area.
Abstract:
A three-dimensional image display device includes a display panel including M×N pixels arranged in M rows by N columns, displaying kn viewpoint images, and configured to display a color image using L primary colors. The display panel also includes a viewpoint forming unit including L viewpoint forming devices arranged in a row direction and configured to separate the kn viewpoint images at different angles to project the kn viewpoint images on corresponding viewing zones.
Abstract:
A method of driving an auto-stereoscopic display apparatus includes detecting a position of a user to determine a target visible distance, determining at least one original pixel unit having a first unit width based on the target visible distance, wherein the pixel unit includes a plurality of pixel sets in a row, each pixel set including N pixels, comparing the target visible distance to a predetermined reference visible distance of the auto-stereoscopic display apparatus, and converting the original pixel unit to a compensated pixel unit having a second unit width different from the first unit width to project viewpoint sets through the N pixels to a viewing zone at the target visible distance.