Abstract:
A display apparatus includes: a pixel part including a plurality of pixels arranged substantially in a matrix form, where the matrix form includes a unit matrix having X columns in a horizontal direction and Y rows in a vertical direction, where X and Y are natural numbers; and a plurality of light controlling parts inclined with respect to the vertical direction of the pixels on the pixel part at an inclined angle of θ, where the inclined angle of θ satisfies the following equation: θ=tan−1((M×X)/(N×Y)), where M and N are different natural numbers.
Abstract:
A display apparatus includes a display panel, a light source part and a directional light projecting element. The display panel displays a first image during a first subframe and a different second image during a second subframe. The light source part provides light to the display panel. The directional light projecting element is disposed between the display panel and the light source part. The directional light projecting element includes a barrier part and a lens part disposed above the barrier part. The barrier part has a plurality of barriers defined as a plurality of first electrodes and a plurality of second electrodes crossing the first electrodes. The lens part has a plurality of lenses disposed in a first direction and a second direction crossing the first direction. Each of the lenses corresponds to a subset of plural lenses among the plurality of the barriers.
Abstract:
A two-dimensional/three-dimensional switchable display apparatus includes: a display panel; a first substrate disposed on the display panel; a first electrode layer disposed on the first substrate and including a plurality of first electrodes; a second substrate disposed on the first substrate; a second electrode layer disposed on the second substrate and including a plurality of second electrodes; and a liquid crystal layer disposed between the first and second substrates. A plurality of lens units are formed in association with a first position of the liquid crystal layer when a lens forming voltage profile is applied to the first electrodes and a common voltage is applied to the second electrodes. When the common voltage is applied to the first electrodes and the lens forming voltage is applied to the second electrodes, the plurality of lens units are formed in association with a second position spaced apart from the first position.
Abstract:
A touch panel includes: a substrate having a first region and a second region. A plurality of sensing cells are disposed in the first region and a pad portion is disposed in the second region. An insulating interlayer is disposed on the plurality of sensing cells, a connection pattern is disposed on the insulating interlayer, with the connection pattern being electrically connected to adjacent sensing cells through contact holes. A transparent conductive pattern is disposed in the second region and on the insulating interlayer, with the transparent conductive pattern being electrically connected to the plurality of sensing cells and the pad portion.
Abstract:
A method of driving an active barrier panel, the active barrier panel comprising an electrode unit which has n barrier electrodes operating as an opening part transmitting light and n barrier electrodes operating as a barrier part blocking the light, the method includes calculating a crosstalk distribution of each of observer's left-eye and right-eye corresponding to each of 2n barrier-shift modes, according to an observer's position, dividing an active area of the active barrier panel into at least one barrier block based on a flat portion of the crosstalk distribution, in which a minimum crosstalk is maintained, determining the barrier-shift mode for each barrier block to maintain the minimum crosstalk, and operating the electrode unit in a corresponding barrier block in the determined barrier-shift mode.
Abstract:
A display apparatus includes a display panel, a light source part and a directional light projecting element. The display panel displays a first image during a first subframe and a different second image during a second subframe. The light source part provides light to the display panel. The directional light projecting element is disposed between the display panel and the light source part. The directional light projecting element includes a barrier part and a lens part disposed above the barrier part. The barrier part has a plurality of barriers defined as a plurality of first electrodes and a plurality of second electrodes crossing the first electrodes. The lens part has a plurality of lenses disposed in a first direction and a second direction crossing the first direction. Each of the lenses corresponds to a subset of plural lenses among the plurality of the barriers.
Abstract:
A display apparatus includes a display panel, a light source part and a directional light projecting element. The display panel displays a first image during a first subframe and a different second image during a second subframe. The light source part provides light to the display panel. The directional light projecting element is disposed between the display panel and the light source part. The directional light projecting element includes a barrier part and a lens part disposed above the barrier part. The barrier part has a plurality of barriers defined as a plurality of first electrodes and a plurality of second electrodes crossing the first electrodes. The lens part has a plurality of lenses disposed in a first direction and a second direction crossing the first direction. Each of the lenses corresponds to a subset of plural lenses among the plurality of the barriers.
Abstract:
A two-dimensional/three-dimensional switchable display apparatus includes: a display panel; a first substrate disposed on the display panel; a first electrode layer disposed on the first substrate and including a plurality of first electrodes; a second substrate disposed on the first substrate; a second electrode layer disposed on the second substrate and including a plurality of second electrodes; and a liquid crystal layer disposed between the first and second substrates. A plurality of lens units are formed in association with a first position of the liquid crystal layer when a lens forming voltage profile is applied to the first electrodes and a common voltage is applied to the second electrodes. When the common voltage is applied to the first electrodes and the lens forming voltage is applied to the second electrodes, the plurality of lens units are formed in association with a second position spaced apart from the first position.
Abstract:
A liquid crystal lens panel includes a first substrate, a second substrate, and a liquid crystal layer. The first substrate includes a first base substrate, a lens common electrode disposed on the first base substrate, and a first alignment layer disposed on the lens common electrode, the first alignment layer including a first alignment direction. The second substrate includes a second base substrate opposite to the first base substrate, a plurality of lens electrodes that extend in a lens axis and is parallel with each other, and a second alignment layer disposed on the plurality of lens electrodes, the second alignment layer including a second alignment direction substantially perpendicular to the first alignment direction. The liquid crystal layer is disposed between the first and second alignment layers.
Abstract:
A liquid crystal lens panel includes a first substrate, a second substrate, and a liquid crystal layer. The first substrate includes a first base substrate, a lens common electrode disposed on the first base substrate, and a first alignment layer disposed on the lens common electrode, the first alignment layer including a first alignment direction. The second substrate includes a second base substrate opposite to the first base substrate, a plurality of lens electrodes that extend in a lens axis and is parallel with each other, and a second alignment layer disposed on the plurality of lens electrodes, the second alignment layer including a second alignment direction substantially perpendicular to the first alignment direction. The liquid crystal layer is disposed between the first and second alignment layers.