Abstract:
A two-dimensional/three-dimensional switchable display apparatus includes: a display panel; a first substrate disposed on the display panel; a first electrode layer disposed on the first substrate and including a plurality of first electrodes; a second substrate disposed on the first substrate; a second electrode layer disposed on the second substrate and including a plurality of second electrodes; and a liquid crystal layer disposed between the first and second substrates. A plurality of lens units are formed in association with a first position of the liquid crystal layer when a lens forming voltage profile is applied to the first electrodes and a common voltage is applied to the second electrodes. When the common voltage is applied to the first electrodes and the lens forming voltage is applied to the second electrodes, the plurality of lens units are formed in association with a second position spaced apart from the first position.
Abstract:
The present invention relates to an image display device using a diffractive lens. An image display device according to an exemplary embodiment of the present invention includes a display panel displaying an image, and a diffractive lens for the image of the display panel to be recognized as a two-dimensional (2D) image or a three-dimensional (3D) image, wherein the diffractive lens modifies a path of light by using an optical principle of a Fresnel zone plate.
Abstract:
A two-dimensional/three-dimensional switchable display apparatus includes: a display panel; a first substrate disposed on the display panel; a first electrode layer disposed on the first substrate and including a plurality of first electrodes; a second substrate disposed on the first substrate; a second electrode layer disposed on the second substrate and including a plurality of second electrodes; and a liquid crystal layer disposed between the first and second substrates. A plurality of lens units are formed in association with a first position of the liquid crystal layer when a lens forming voltage profile is applied to the first electrodes and a common voltage is applied to the second electrodes. When the common voltage is applied to the first electrodes and the lens forming voltage is applied to the second electrodes, the plurality of lens units are formed in association with a second position spaced apart from the first position.
Abstract:
A stereoscopic image display device, including a display unit comprising a plurality of pixel units, wherein at least one of the pixel units has a short side extended in a first direction and a long side extended in a second direction different from the first direction, and an image conversion unit comprising a lenticular lens overlapped with at least two of the pixel units arranged in the first direction, wherein the lenticular lens is extended in the second direction and a first prism corresponding to the lenticular lens is arranged in the second direction.
Abstract:
A three-dimensional display device comprises a flat display panel and an image-converting sheet disposed on or above the display panel. The display panel comprises a matrix of unit display cells arranged as rows and columns and where the cells are spaced apart to have respective row and column direction pitches. The image-converting sheet comprises a plurality of inclined lenticular lenses where the inclination is set according to the row and column direction pitches so as to reduce perception of Moiré patterns when stereo-scopic images are projected through the image-converting sheet to an observer viewing the display panel as an upright panel having respectively different left and right stereo-scopic image projections.
Abstract:
The present invention relates to an image display device using a diffractive lens. An image display device according to an exemplary embodiment of the present invention includes a display panel displaying an image, and a diffractive lens for the image of the display panel to be recognized as a two-dimensional (2D) image or a three-dimensional (3D) image, wherein the diffractive lens modifies a path of light by using an optical principle of a Fresnel zone plate.
Abstract:
The present invention relates to an image display device using a diffractive lens. An image display device according to an exemplary embodiment of the present invention includes a display panel displaying an image, and a diffractive lens for the image of the display panel to be recognized as a two-dimensional (2D) image or a three-dimensional (3D) image, wherein the diffractive lens modifies a path of light by using an optical principle of a Fresnel zone plate.
Abstract:
A display device includes a first substrate; a first conductive pattern, a first voltage line and a second voltage line on the first substrate; an insulating layer on the first conductive pattern and the second voltage line; a plurality of first light-emitting elements on the insulating layer; a first electrode on the insulating layer and connected to the first conductive pattern, the first electrode overlapping the first voltage line; and a second electrode on the insulating layer and connected to the second voltage line, wherein the plurality of first light-emitting elements are in contact with the first electrode and the second electrode, and wherein a part of an upper surface of the first electrode that overlaps the first conductive pattern and a part of the upper surface of the first electrode that overlaps the first voltage line are located on the same plane.
Abstract:
A two-dimensional/three-dimensional switchable display apparatus includes: a display panel; a first substrate disposed on the display panel; a first electrode layer disposed on the first substrate and including a plurality of first electrodes; a second substrate disposed on the first substrate; a second electrode layer disposed on the second substrate and including a plurality of second electrodes; and a liquid crystal layer disposed between the first and second substrates. A plurality of lens units are formed in association with a first position of the liquid crystal layer when a lens forming voltage profile is applied to the first electrodes and a common voltage is applied to the second electrodes. When the common voltage is applied to the first electrodes and the lens forming voltage is applied to the second electrodes, the plurality of lens units are formed in association with a second position spaced apart from the first position.
Abstract:
A stereoscopic image display device, including a display unit comprising a plurality of pixel units, wherein at least one of the pixel units has a short side extended in a first direction and a long side extended in a second direction different from the first direction, and an image conversion unit comprising a lenticular lens overlapped with at least two of the pixel units arranged in the first direction, wherein the lenticular lens is extended in the second direction and a first prism corresponding to the lenticular lens is arranged in the second direction.