Abstract:
A display apparatus includes a display panel, a light source part and a directional light projecting element. The display panel displays a first image during a first subframe and a different second image during a second subframe. The light source part provides light to the display panel. The directional light projecting element is disposed between the display panel and the light source part. The directional light projecting element includes a barrier part and a lens part disposed above the barrier part. The barrier part has a plurality of barriers defined as a plurality of first electrodes and a plurality of second electrodes crossing the first electrodes. The lens part has a plurality of lenses disposed in a first direction and a second direction crossing the first direction. Each of the lenses corresponds to a subset of plural lenses among the plurality of the barriers.
Abstract:
A display panel includes a transmit-control portion and a light blocking portion. The pixel-transmit portion may include a pair of first sides and a pair of second sides and transmitting light, the pair of the first sides being inclined with respect to a horizontal-axis direction and substantially parallel with each other, the pair of the second sides being inclined with respect to a vertical-axis direction and substantially parallel with each other. The blocking portion may surround the pixel-transmit portion and block the light.
Abstract:
A display device including: a substrate including first and second sides which face and are parallel to each other, and third and fourth sides which are orthogonal to the first and second sides, and face each other; a gate driver and a data driver disposed along the first side of the substrate; a first diagonal gate line, which is extended in a first direction crossing directions in which the first to fourth sides are extended, and has both ends heading the second and fourth sides of the substrate; a gate pad part extended from one end of the first diagonal gate line adjacent to the second side; an insulation layer including an opening for exposing at least a partial area of the gate pad part and formed on the substrate; a redundancy line extended in a second direction parallel to a direction in which the third and fourth sides are extended, and connected to the gate driver; and a redundancy pad part extended from the redundancy line to be in direct contact with the gate pad part exposed through the opening.
Abstract:
A display panel displays a first image during a first subframe and a second image during a second subframe. A display panel driver provides the first and second images to the display panel. A light source part provides light to the display panel. A light converting element is disposed between the display panel and the light source part and includes a barrier part and a lens part disposed on the barrier part. The barrier part has a plurality of independently controllable barrier groups. A position detecting part determines a position of a viewer. A barrier driver controls the barrier part to selectively transmit light from the light source part based on the viewer's position. A single barrier group includes a plurality of barriers, and a single barrier includes a plurality of sub-barriers.
Abstract:
A method of displaying a three-dimensional (“3D”) image, the method includes determining a shutter electrode of an unit part included in a shutter panel as a left-eye electrode and a right-eye electrode, the unit part including ‘n’ shutter electrodes (herein, n is a natural number), selectively driving the left-eye electrode and the right-eye electrode as an opening part based on an image displayed on a display panel to transmit light through the opening part, and providing light transmitted through the opening part with an observer's two eyes through a lens plate, the lens plate including a plurality of lenses.
Abstract:
A display apparatus may enable a viewer to perceive an image. The viewer has a right eye and a left eye, the right eye having a right pupil, the left eye having a left pupil. The display apparatus includes a display panel including a plurality of subpixels. The display apparatus further includes a position detecting part configured to detect a user location related to the viewer. The display apparatus further includes a light controlling element configured for transmitting light provided from one or more of the subpixels toward one or more of the right eye and the left eye. The display apparatus further includes a display panel driver configured to change subpixel-eye association for at least one of the subpixels in response to a change of the user location detected by the position detecting part.
Abstract:
A display device including: a substrate including first and second sides which face and are parallel to each other, and third and fourth sides which are orthogonal to the first and second sides, and face each other; a gate driver and a data driver disposed along the first side of the substrate; a first diagonal gate line, which is extended in a first direction crossing directions in which the first to fourth sides are extended, and has both ends heading the second and fourth sides of the substrate; a gate pad part extended from one end of the first diagonal gate line adjacent to the second side; an insulation layer including an opening for exposing at least a partial area of the gate pad part and formed on the substrate; a redundancy line extended in a second direction parallel to a direction in which the third and fourth sides are extended, and connected to the gate driver; and a redundancy pad part extended from the redundancy line to be in direct contact with the gate pad part exposed through the opening.
Abstract:
A method of displaying a three-dimensional (“3D”) image, the method includes determining a shutter electrode of an unit part included in a shutter panel as a left-eye electrode and a right-eye electrode, the unit part including ‘n’ shutter electrodes (herein, n is a natural number), selectively driving the left-eye electrode and the right-eye electrode as an opening part based on an image displayed on a display panel to transmit light through the opening part, and providing light transmitted through the opening part with an observer's two eyes through a lens plate, the lens plate including a plurality of lenses.
Abstract:
A display apparatus includes a display panel, a light source part and a directional light projecting element. The display panel displays a first image during a first subframe and a different second image during a second subframe. The light source part provides light to the display panel. The directional light projecting element is disposed between the display panel and the light source part. The directional light projecting element includes a barrier part and a lens part disposed above the barrier part. The barrier part has a plurality of barriers defined as a plurality of first electrodes and a plurality of second electrodes crossing the first electrodes. The lens part has a plurality of lenses disposed in a first direction and a second direction crossing the first direction. Each of the lenses corresponds to a subset of plural lenses among the plurality of the barriers.
Abstract:
An active barrier panel includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a first opening electrode configured to operate as a first opening transmitting the light and a first barrier electrode configured to as a first barrier blocking the light, the first opening electrode and the first barrier electrode having a step structure. The second substrate includes a second opening electrode configured to operate as a second opening and crossing at a right angle to the first opening electrode, and a second barrier electrode configured to operate as a second barrier and crossing at a right angle to the first barrier electrode. The liquid crystal layer is disposed between the first and second substrates.