Abstract:
A method of manufacturing a display substrate includes forming a gate electrode on a base substrate, forming an active pattern which includes an oxide semiconductor and overlaps with the gate electrode, forming an etch stopper which partially covers the active pattern, and performing a plasma treatment process to promote a reduction reaction to portions of the active pattern exposed by the etch stopper, thereby forming a source electrode and a drain electrode.
Abstract:
A display substrate includes a gate electrode on a base substrate, an active pattern which overlaps the gate electrode and includes a metal oxide semiconductor, an insulation pattern on the active pattern, a source electrode which contacts the active pattern, a drain electrode which contacts the active pattern and is spaced apart from the source electrode, and a first passivation layer which covers the active pattern and the insulation pattern, and includes fluorine, where the active pattern includes a first portion which directly contacts the insulation pattern and overlaps the gate electrode and the insulation pattern, a second portion which contacts the first passivation layer and has an electrical conductivity substantially larger than that of the first portion, a third portion which contacts the first passivation layer, has an electrical conductivity substantially larger than that of the first portion and is spaced apart from the second portion.
Abstract:
A thin film transistor substrate includes an active pattern which is disposed on a base substrate and includes a channel, a source electrode and a drain electrode, the channel which includes an oxide semiconductor, the source electrode and the drain electrode connected the channel, a gate electrode overlapped with the channel, a passivation layer which covers the source electrode, the drain electrode and the gate electrode and a fluorine deposition layer disposed between the active pattern and the passivation layer.