Abstract:
A liquid crystal display (LCD) device includes: a first substrate and a second substrate disposed opposite to each other; a liquid crystal layer disposed between the first substrate and the second substrate; a gate line and a data line disposed on the first substrate; a transistor connected to the gate line and the data line; a pixel electrode disposed in a pixel region of the first substrate; a connecting electrode connecting the pixel electrode and the transistor; a common electrode overlapping the pixel electrode; a protection layer disposed between the pixel electrode and the common electrode; and a black matrix disposed on the protection layer, the black matrix defining the pixel region. The black matrix includes: a horizontal portion extending along the gate line and a vertical portion extending along the data line and overlaps the data line and at least one of the pixel electrode and the common electrode.
Abstract:
A method of manufacturing a display panel is provided. The method includes preparing a mother panel, disposing a wheel unit on the mother panel, and cutting the mother panel along a plurality of cutting lines using the wheel unit. The mother panel includes a boundary of the mother panel and a plurality of unit panels within the boundary. Each of the plurality of unit panels includes a first substrate, a second substrate facing the first substrate, a display area, and a sealant. The sealant is disposed between the first and second substrates to couple the first and second substrates. The wheel unit applies different pressures to the first and second substrates to cut the first and second substrates when the mother panel is cut.
Abstract:
A display device includes a first substrate. A first gate line is disposed on the first substrate. First and second data lines intersect the first gate line. A first transistor is connected to the first gate line and the first data line. A second transistor is connected to the first gate line and the second data line. A first passivation layer is disposed on the first and second transistors, the first passivation layer including a first contact hole. A first pixel electrode is disposed on the first passivation layer, the first pixel electrode being connected to the first transistor through the first contact hole. A second pixel electrode is disposed on the first passivation layer, the second pixel electrode being connected to the second transistor through the first contact hole. The first and second transistors are both exposed through the first contact hole.
Abstract:
A liquid crystal display includes a display substrate, in which a plurality of domains is defined, includes a pixel electrode disposed in each of the plurality of domains and configured to have a plurality of branch electrodes and a common electrode. A liquid crystal layer disposed between the display substrate and an opposite substrate. A plurality of domains is arranged in a column direction and a row direction. Each of the domains includes first and second sides, a first horizontal edge, and a second horizontal edge facing the first horizontal edge. The second side is parallel with the column direction and the first side is parallel with a first slanted direction. A slit is defined between adjacent branch electrodes. The slit has a first width adjacent to the first horizontal edge, and a second width adjacent to the second horizontal edge.
Abstract:
A display apparatus includes a first substrate that includes a display area in which pixels are arranged and a non-display area surrounding the display area, a second substrate disposed to face the first substrate, and a sealing member disposed in the non-display area to attach the second substrate to the first substrate. The first substrate includes a base substrate, a plurality of inorganic insulating layers disposed on the base substrate in the non-display area, and an organic layer disposed on the inorganic insulating layer.
Abstract:
A method for manufacturing a curved liquid crystal display panel includes bending a display member including at least one alignment layer at a predetermined curvature using a jig and forming an alignment axis in the alignment layer while the display member is bent using an alignment axis forming part. A control part is used to control an operation of the jig and the alignment axis forming part.
Abstract:
A display device includes a first substrate. A first gate line is disposed on the first substrate. First and second data lines intersect the first gate line. A first transistor is connected to the first gate line and the first data line. A second transistor is connected to the first gate line and the second data line. A first passivation layer is disposed on the first and second transistors, the first passivation layer including a first contact hole. A first pixel electrode is disposed on the first passivation layer, the first pixel electrode being connected to the first transistor through the first contact hole. A second pixel electrode is disposed on the first passivation layer, the second pixel electrode being connected to the second transistor through the first contact hole. The first and second transistors are both exposed through the first contact hole.
Abstract:
A LCD device includes a first substrate, a second substrate, and a liquid crystal layer between the first substrate and the second substrate. A gate line is disposed on the first substrate. The gate line extends in a first direction. A plurality of data lines extend in a second direction intersecting the first direction. A thin film transistor of a plurality of thin film transistors is disposed at an intersection area between each of the plurality of data lines and the gate line. First, second and third pixel electrodes are sequentially arranged in the first direction. Each of the first, second and third pixel electrodes are respectively connected to one of the thin film transistors. At least two data lines are disposed between the second pixel electrode and the third pixel electrode, and at least one data line is disposed between the second pixel electrode and the first pixel electrode.
Abstract:
A method of manufacturing a display panel is provided. The method includes preparing a mother panel, disposing a wheel unit on the mother panel, and cutting the mother panel along a plurality of cutting lines using the wheel unit. The mother panel includes a boundary of the mother panel and a plurality of unit panels within the boundary. Each of the plurality of unit panels includes a first substrate, a second substrate facing the first substrate, a display area, and a sealant. The sealant is disposed between the first and second substrates to couple the first and second substrates. The wheel unit applies different pressures to the first and second substrates to cut the first and second substrates when the mother panel is cut.