Abstract:
A display device includes a timing controller for controlling the display of an image. The timing controller forms a frame for an image signal based on a main frame, a compensation frame, and at least one blank frame. The timing controller also determines a driving method for the display pixels to generate output image data. The main frame serves to display the image signal. The compensation frame serves to compensate luminance of the main frame. The blank frame serves to express a black gray scale value.
Abstract:
A pixel circuit includes: an organic light emitting diode (“OLED”); a threshold circuit which generates an output signal based on an input signal, where the threshold circuit has a hysteresis characteristic with respect to the input signal; a first transistor including a first electrode connected to a data line, a second electrode connected to an input terminal of the threshold circuit, and a gate electrode connected to a scan line; and a second transistor including a first electrode connected to a first power, a second electrode connected to an anode of the organic light emitting diode, and a gate electrode connected to an output terminal of the threshold circuit, where the second transistor controls a current amount that flows to the organic light emitting diode from the first power based on the output signal of the threshold circuit.
Abstract:
Provided are a source gas supply unit capable of supplying a constant amount of source gas to a deposition chamber to deposit a uniform layer, and a deposition apparatus and method using the same. The source gas supply unit includes a canister in which a source is stored, a heater heating the canister, a source gas supply pipe provided on one side of the canister, a measuring unit installed on the source gas supply pipe and measuring an amount of source gas passing through the source gas supply pipe, and a temperature controller connected to the heater and the measuring unit. The temperature controller controls the heater based on the amount of the source gas measured by the measuring unit.
Abstract:
A display device includes: a unit pixel including subpixels electrically connected to first power voltages and a second power voltage, where the first power voltages include a first first power voltage and a second first power voltage, and where the subpixels include: a first subpixel electrically connected to the first first power voltage and the second power voltage; a second subpixel electrically connected to the second first power voltage and the second power voltage; and a third subpixel electrically connected to the second first power voltage and the second power voltage, where the first power voltage is a voltage having substantially a same level as a voltage, with which the first subpixel emits light at maximum luminance, and the second power voltage is a voltage having substantially a same level as a voltage, with which the second subpixel or the third subpixel emits light at maximum luminance.
Abstract:
A display device includes a display unit including pixels, each of which emits light according to data voltages, respectively; and a timing controller which divides an area of the display unit into an upper, center and bottom portions, divides one frame time into light emission sub-frames of a light emission period and a blank sub-frame of a blank period in which is supplied a black data signal, divides the upper, center and the bottom portions into groups, differentiates a scan start time of a light emission sub-frame and a scan start time of the blank sub-frame of each group, and increases the light emission period and decreases the blank period in proportional to an increase ratio of the light emission period as a group is closer to a middle of the center portion.
Abstract:
A controller for a display panel may include a first supply circuit to output first and second driving voltages to a sub-pixel of a first color; and a second supply circuit to output third and fourth driving voltages to a sub-pixel of a second color. The first driving voltage may be greater than the second driving voltage, and the third driving voltage may be greater than the fourth driving voltage. Also, at least three of the first, second, third, and fourth driving voltages may be different from one another.
Abstract:
A method of manufacturing an organic light emitting diode display according to an exemplary embodiment of the present invention includes: forming a first electrode on a substrate; forming an insulation layer on the first electrode; etching the insulation layer to expose the first electrode so as to form a pixel defining layer having the same height as the first electrode; forming an organic layer including one or more emission layers on the first electrode of a sub-pixel region defined by the pixel defining layer by applying a laser-induced thermal imaging (LITI) method; and forming a second electrode on the organic layer.
Abstract:
An organic light emitting display device may include a first substrate, a first electrode disposed on the first substrate, a pixel defining layer disposed on the first electrode and the first substrate, an organic light emitting structure disposed on the first electrode, a second electrode disposed on the organic light emitting structure and the pixel defining layer, a second substrate disposed on the second electrode, etc. The pixel defining layer may include a fine uneven structure positioned in the display and the non-display regions. The organic light emitting structure may be substantially uniformly formed on the first electrode through the pixel defining layer having the fine uneven structure, so that an organic light emitting display device may exhibit increased lifetime and may show improved image quality.