Abstract:
A display device includes a substrate comprising a display area and a non-display area. A gate line and a data line are disposed on the substrate. A thin film transistor is disposed on the display area and coupled to the gate line and the data line. A pad is disposed in the non-display area. A passivation layer is disposed on the thin film transistor and the pad. A pixel electrode is coupled to the thin film transistor. The passivation layer has a thickness that is smaller in the non-display area than in the display area, and the passivation layer has a thickness of about 0.1 μm to about 1 μm in the non-display area.
Abstract:
An exposure system includes an exposure apparatus and a phase shift mask. The exposure apparatus emits a multi-wavelength light including a plurality of wavelengths different from each other. The phase shift mask includes a transparent substrate and a light blocking layer. The transparent substrate includes a first surface, and a second surface opposite to the first surface. The multi-wavelength light is incident into the first surface. The transparent substrate further includes a recess which extends from the second surface toward the first surface. The light blocking layer includes a first opening which exposes the second surface of the transparent substrate, and a second opening which is spaced apart from the first opening and exposes the recess of the transparent substrate.
Abstract:
An optical mask for forming a pattern is provided. The optical mask includes: a substrate including a light blocking pattern formed on portions of the substrate, wherein the light blocking pattern includes a halftone layer and a light blocking layer formed on the halftone layer, and the halftone layer and the light blocking layer overlap such that at least an edge portion of the halftone layer is exposed. A pitch of the light blocking pattern may about 6 μm, and a transmission ratio of the halftone layer may range from about 10% to about 50%.
Abstract:
A mask including: a transparent substrate and a light blocking layer thereon. The transparent substrate includes a first transmitting portion and a second transmitting portion each configured to pass light, and a light blocking portion configured to block light. The first transmitting portion includes a first transmitting region configured to pass light and a first light blocking region configured to block light, and area centers of the first transmitting region and the first light blocking region substantially coincide. The second transmitting portion includes a second transmitting region configured to pass light and a second light blocking region configured to block light, and area centers of the second transmitting region and the second light blocking region substantially coincide, so that the first transmitting portion is configured to pass light of a greater intensity and the second transmitting portion is configured to pass light of a lesser intensity.
Abstract:
A phase shift device includes a phase shift mask which includes a transparent substrate, and a phase shift pattern which is provided on the transparent substrate, and includes a first area having a first thickness, a second area having a second thickness which is less than the first thickness, a first opening having a first opening width and defined at the first area, and a second opening having a second opening width and defined at the second area.
Abstract:
A display device includes a reflective polarizer plate including a first substrate defining an opening area and a non-opening area, and a wire grid polarizer which is disposed on a surface of the first substrate and includes a polarizing part including a plurality of nano wire patterns which is arranged in the opening area to be spaced apart from each other, and a reflecting part including a metal film provided in the non-opening area.
Abstract:
A photomask for exposure includes: a transparent substrate; a light blocking pattern layer positioned on the transparent substrate; a first dielectric layer positioned on the light blocking pattern layer and including a dielectric material; and a negative refractive index layer positioned on the first dielectric layer and including a metal. A surface plasmon quasi-bound mode of the photomask for exposure overlaps a wavelength range of the light source of the light exposer which irradiates light to the photomask for exposure.
Abstract:
A mask may include a circuit area and a pixel area. The circuit area includes a circuit pattern. The pixel area includes a pixel pattern which is extended in a length direction and an assist pattern which is at an end portion of the pixel pattern and adjacent to the circuit area.