Abstract:
A display device includes a display area including a first light-emitting area and a second light-emitting area; a peripheral area adjacent to the display area; pixels which emit incident light; an encapsulation layer covering the pixels; a first color-converting pattern corresponding to the first light-emitting area and having a refractivity; a transmission pattern corresponding to the second light-emitting area and through which the incident light is transmitted; a low refractivity layer is in the display area and facing the encapsulation layer with each of the first color-converting pattern and the transmission pattern therebetween, the low refractivity layer including: a resin and a hollow particle which define a refractivity lower than the refractivity of the first color-converting pattern; and a first dam structure in the peripheral area and spaced apart from the display area, the first dam structure and the transmission pattern being portions of a same material layer.
Abstract:
Provided is a display device. The display device includes a liquid crystal display panel and an optical film disposed above the liquid crystal display panel, the optical film comprising a first pattern layer having a first refractive index and a second pattern layer having a second refractive index different from the first refractive index and disposed on the first pattern layer. The first pattern layer includes a first base part and a plurality of first protrusions. Each of the first protrusions includes a bottom surface adjacent to the first base part, an upper surface facing the bottom surface, and side surfaces between the bottom surface and the upper surface. Each of the side surfaces is perpendicular to the bottom surface and the upper surface.
Abstract:
A photoresist composition for manufacturing a color filter, the photoresist composition includes a first red colorant and a yellow colorant represented by Chemical Formula 1, wherein R1 and R2 each independently represent a C1 to C10 alkyl group, wherein A1, A2, A3, and A4 each independently represent a C1 to C10 alkyl group, —CN, —PO3H2, —C(O)OH, or a hydrogen atom, m is an integer of 1 to 10, and optionally wherein at least one —CH2— of R1 and R2 if present is independently replaced with —O—, —C(O)—, —C(O)O—, or —OC(O)—.
Abstract:
An optical film may include a first pattern layer having a first refractive index and including a base portion and a plurality of protrusions on the base portion x, and a second pattern layer disposed on the first pattern layer and having a second refractive index different from the first refractive index. Each of the protrusions may include n sub-protrusions (n is an integer of 2 or greater), which are stacked in a thickness direction of the base portion. Each of the n sub-protrusions may have a quadrilateral shape. A side surface of the protrusion defined by the n sub-protrusions may include at least one step portion. The optical film improves display quality of a display device in front and lateral directions.
Abstract:
An electronic device includes a light source member configured to provide a first light, a color conversion member disposed on the light source member and including a first conversion material that converts the first light into a second light and a second conversion material that converts the first light into a third light, and a low-refractive index layer disposed on the light source member and disposed on at least one of upper and lower portions of the color conversion member. The low-refractive index layer includes a matrix part, a plurality of hollow inorganic particles dispersed in the matrix part, and a plurality of void parts defined by the matrix part.
Abstract:
An exemplary embodiment of the present invention relates to a liquid crystal display having a display area and a non-display area which includes a first substrate and a second substrate facing the first substrate, a layer having a first opening, a spacer disposed in the first opening, and a first light blocking member disposed in the non-display area. The spacer is disposed in the first opening to maintain an interval between the first substrate and the second substrate. The spacer and the first light blocking member include the same material.
Abstract:
An electronic device includes a light source member configured to provide a first light, a color conversion member disposed on the light source member and including a first conversion material that converts the first light into a second light and a second conversion material that converts the first light into a third light, and a low-refractive index layer disposed on the light source member and disposed on at least one of upper and lower portions of the color conversion member. The low-refractive index layer includes a matrix part, a plurality of hollow inorganic particles dispersed in the matrix part, and a plurality of void parts defined by the matrix part.
Abstract:
A display device including a light emitting element layer, an encapsulation layer disposed on the light emitting element layer, wherein the encapsulation layer includes a hollow polymer structure, and an input sensor disposed on the encapsulation layer.
Abstract:
A display device includes a display panel from which light is emitted; and an optical film to which the light from the display panel is incident. The optical film includes: a first pattern layer having a first refractive index, and a second pattern layer having a second refractive index lower than the first refractive index, the second pattern layer including a plurality of hollow inorganic particles. The second pattern layer which has the second refractive index lower than the first refractive index and includes the plurality of hollow inorganic particles, is disposed further from the display panel than the first pattern layer.
Abstract:
An optical film includes a first pattern layer including a first base portion and first protruding portions disposed on the first base portion to be spaced apart from each other and having a first refractive index and a second pattern layer disposed on the first pattern layer and having a second refractive index. Each of the first protruding portions includes a first sub-protruding portion having a first width in a cross-section perpendicular to the first base portion, a second sub-protruding portion disposed between the first base portion and the first sub-protruding portion and having a width that increases from the first sub-protruding portion to the first base portion, and a third sub-protruding portion disposed on the first sub-protruding portion and having a width that decreases as a distance from the first sub-protruding portion increases.