Abstract:
A display device includes a first substrate including a display area and a non-display area, the display area including a pixel including a first electrode, a light emission layer, and a second electrode; a sealing member facing the first substrate; and a first conducting member in the display area, the first conducting member being coupled to the first electrode, where the sealing member includes: a first conductive layer coupled to the first conducting member; an insulating layer on the first conductive layer; and a second conductive layer on the insulating layer, the second conductive layer being coupled to the second electrode.
Abstract:
An organic light emitting display device includes a display panel having pixels, a red color high power voltage line, a green color high power voltage line, a blue color high power voltage line, and a low power voltage line, a driving current calculator for calculating an amount of a red color driving current of image data, an amount of a green color driving current of the image data, and an amount of a blue color driving current of the image data, and a power supply for generating a red color high power voltage, a green color high power voltage, and a blue color high power voltage for which overshoot times are controlled to be within a falling time during which the low power voltage is changed from a first level to a second level or to be within a rising time during which the low power voltage is changed from the second level to the first level.
Abstract:
A display device includes a display panel including a plurality of pixels, a control unit configured to scale image data provided from the outside based on an image load factor and to output the scaled image data, and a data driver configured to supply data signals corresponding to the scaled image data to a plurality of data lines connected to the pixels, wherein the control unit includes a load factor calculating unit configured to calculate a load factor of the image data; and a data scaler configured to scale a gray level of the image data based on a scaling ratio corresponding to a load factor.
Abstract:
A method of displaying a stereoscopic image and a display device are disclosed. In one aspect, the method includes sequentially writing black data to a portion of the pixel rows during a portion of a first frame period and sequentially writing left eye image data to the pixel rows during the remaining portion of the first frame period and during a second frame period. The method also includes driving the pixel rows to simultaneously emit light during a first emission period, sequentially writing the black data to the portion of the pixel rows during a portion of a third frame period, and sequentially writing right eye image data to the pixel rows during the remaining portion of the third frame period and during a fourth frame period. The method further includes driving the pixel rows to simultaneously emit light during a second emission period corresponding to the fourth frame period.
Abstract:
A method of displaying a stereoscopic image and a display device are disclosed. In one aspect, the method includes first providing a first portion of left eye image data to a plurality of pixel rows during a first non-emission period of a first frame period, wherein the first frame period includes a first emission period having a first emission transition period and a first compensation period. The method also includes second providing a second portion of the left eye image data to the pixel rows during the first emission transition period while sequentially providing the left eye image data to the pixel rows during the first emission period. The method further includes third providing the second portion of the left eye image data to the pixel rows during the first compensation period and driving the pixel rows to concurrently emit light during the first emission period.
Abstract:
A method of displaying a stereoscopic image and a display device are disclosed. In one aspect, the method includes first providing a first portion of left eye image data to a plurality of pixel rows during a first non-emission period of a first frame period, wherein the first frame period includes a first emission period having a first emission transition period and a first compensation period. The method also includes second providing a second portion of the left eye image data to the pixel rows during the first emission transition period while sequentially providing the left eye image data to the pixel rows during the first emission period. The method further includes third providing the second portion of the left eye image data to the pixel rows during the first compensation period and driving the pixel rows to concurrently emit light during the first emission period.
Abstract:
A method of digital-driving an organic light emitting display device includes analyzing a light emission pattern of the input image data and converting a third grayscale of the input image data into a first converted grayscale and a second converted grayscale based on an analysis result of the light emission pattern of the input image data.
Abstract:
A display device includes a first substrate including a display area and a non-display area, the display area including a pixel including a first electrode, a light emission layer, and a second electrode; a sealing member facing the first substrate; and a first conducting member in the display area, the first conducting member being coupled to the first electrode, where the sealing member includes: a first conductive layer coupled to the first conducting member; an insulating layer on the first conductive layer; and a second conductive layer on the insulating layer, the second conductive layer being coupled to the second electrode.
Abstract:
An organic light-emitting diode display and a method of driving the same are disclosed. In one aspect, the display includes a display panel and an image data converter configured to determine a grayscale gain based on a grayscale distribution of input image data and convert the input image data into output image data based on the grayscale gain. A display panel driver is configured to drive the display panel to display an image corresponding to the output image data, and a target current determiner is configured to determine a magnitude of a target current based on the input image data. The display also includes a power supply configured to provide a power source to the display panel and adjust the voltage level of the power source to correspond to the target current via a power line.
Abstract:
A display device includes a display panel including a plurality of pixels, a control unit configured to scale image data provided from the outside based on an image load factor and to output the scaled image data, and a data driver configured to supply data signals corresponding to the scaled image data to a plurality of data lines connected to the pixels, wherein the control unit includes a load factor calculating unit configured to calculate a load factor of the image data; and a data scaler configured to scale a gray level of the image data based on a scaling ratio corresponding to a load factor.