Abstract:
Mutant photosynthetic microorganisms having reduced chlorophyll and increased photosynthetic efficiency are provided. The mutant strains have mutated chloroplastic SRP54 genes and exhibit increased productivity with respect to wild type strains. Also provided are mutant algal strains having mutated cytosolic SRP54 genes. Provided herein are methods of producing biomass and other products such as lipids using strains having mutations in an SRP54 gene. Also included are constructs and methods for attenuating or disrupting SRP54 genes.
Abstract:
The disclosure generally relates to methods and materials for modulating cell productivity. In particular, the present disclosure provides polynucleotides encoding transcription factor proteins that when overexpressed in microorganisms result in increased in productivity, such as increased biomass productivity. Also disclosed are methods of using the genetically engineered host strains to modulate or increase productivity of host cells such as, for example, algal or heterokont cells. Genetically engineered host cells, such as algal and heterokont cells having increased biomass productivity and bioproducts derived from such host cells are also disclosed.
Abstract:
The present invention provides mutant microorganism that have higher lipid productivity than the wild type microorganisms from which they are derived while biomass at levels that are within approximately 50% of wild type biomass productivities under nitrogen replete conditions. Particular mutants produce at least twice as much FAME lipid as wild type while producing at least 75% of the biomass produced by wild type cells under nitrogen replete conditions. Also provided are methods of producing lipid using the mutant strains.
Abstract:
The present invention relates to the culture and manipulation of microorganisms for biotech applications, and is based on the discovery and characterization of spliced leader sequences identified in transcripts from Nannochloropsis species. In particular, the invention provides nucleic acid compositions comprising a SL sequence operably linked to a protein-encoding gene. Further provided are compositions and methods for enhanced gene expression in recombinant microorganisms as well as methods for identification and/or isolation of nucleic acid molecules tagged with a spliced leader sequence.
Abstract:
The present invention provides mutant microorganism that have higher lipid productivity than the wild type microorganisms from which they are derived while biomass at levels that are within approximately 50% of wild type biomass productivities under nitrogen replete conditions. Particular mutants produce at least twice as much FAME lipid as wild type while producing at least 75% of the biomass produced by wild type cells under nitrogen replete conditions. Also provided are methods of producing lipid using the mutant strains.
Abstract:
The present invention provides mutant microorganism that have higher lipid productivity than the wild type microorganisms from which they are derived while producing biomass at levels that are at least 45% of wild type biomass productivity under nitrogen replete conditions. Particular mutants produce at least 50% as much FAME lipid as wild type while producing at least the amount of biomass produced by wild type cells under nitrogen replete conditions. Also provided are methods of producing lipid using the mutant strains.
Abstract:
Mutant photosynthetic microorganisms having reduced chlorophyll and increased photosynthetic efficiency are provided. The mutants have a locked in high light-acclimated phenotype, in which many of the photosynthetic parameters characteristic of high light acclimated wild type cells are found in the LIHLA mutants when acclimated to low light, such as reduced chlorophyll, reduced NPQ, higher qP, higher Ek, higher Pmax per unit chlorophyll with little to no reduction in Pmax per cell, and higher rates of electron transport through photosystem II over a wide range of light intensities. Provided herein are constructs for attenuating or disrupting genes are provided for generating mutants having the LIHLA phenotype. Also provided are methods of culturing LIHLA mutants for the production of biomass or other products.
Abstract:
The present invention relates to the culture and manipulation of microorganisms for biotech applications, and is based on the discovery and characterization of spliced leader sequences identified in transcripts from Nannochloropsis species. In particular, the invention provides nucleic acid compositions comprising a SL sequence operably linked to a protein-encoding gene. Further provided are compositions and methods for enhanced gene expression in recombinant microorganisms as well as methods for identification and/or isolation of nucleic acid molecules tagged with a spliced leader sequence.
Abstract:
The present invention provides mutant microorganism that have higher lipid productivity than the wild type microorganisms from which they are derived while biomass at levels that are within approximately 50% of wild type biomass productivities under nitrogen replete conditions. Particular mutants produce at least twice as much FAME lipid as wild type while producing at least 75% of the biomass produced by wild type cells under nitrogen replete conditions. Also provided are methods of producing lipid using the mutant strains.
Abstract:
Mutant photosynthetic microorganisms having reduced chlorophyll and increased photosynthetic efficiency are provided. The mutant strains have mutated chloroplastic SRP54 genes and exhibit increased productivity with respect to wild type strains. Also provided are mutant algal strains having mutated cytosolic SRP54 genes. Provided herein are methods of producing biomass and other products such as lipids using strains having mutations in an SRP54 gene. Also included are constructs and methods for attenuating or disrupting SRP54 genes.