Abstract:
An integrated electronic device, delimited by a first surface and by a second surface and including: a body made of semiconductor material, formed inside which is at least one optoelectronic component chosen between a detector and an emitter; and an optical path which is at least in part of a guided type and extends between the first surface and the second surface, the optical path traversing the body. The optoelectronic component is optically coupled, through the optical path, to a first portion of free space and a second portion of free space, which are arranged, respectively, above and underneath the first and second surfaces.
Abstract:
A method for making an integrated micro-electromechanical device includes forming a first body of semiconductor material having a first face and a second face opposite the first face. The first body includes a buried cavity forming a diaphragm delimited between the buried cavity and the first face. The diaphragm is monolithic with the first body. The method further includes forming at least one first magnetic via extending between the second face and the buried cavity of the first body, forming a first magnetic region extending over the first face of the first body, and forming a first coil extending over the second face of the first body and being magnetically coupled to the first magnetic via.
Abstract:
In one example, a method of compensating resistance in an integrated circuit includes providing a four terminal resistor in a semiconductor substrate. The resistor includes a first resistor and a second resistor coupled in series, a first terminal at a first end of the resistor, a second terminal at a second end of the resistor, a test terminal at a node connecting the first resistor and the second resistor, and a tuning terminal. The first resistor has a first conductivity type and the second resistor has a second conductivity type opposite to the first conductivity type. The first resistor includes a first portion extending along a first direction and a second portion extending along a second direction perpendicular to the first direction. The method further includes computing a voltage to be applied at the tuning terminal to compensate the difference between the resistance of the first and the second resistors.
Abstract:
A method for making an integrated micro-electromechanical device includes forming a first body of semiconductor material having a first face and a second face opposite the first face. The first body includes a buried cavity forming a diaphragm delimited between the buried cavity and the first face. The diaphragm is monolithic with the first body. The method further includes forming at least one first magnetic via extending between the second face and the buried cavity of the first body, forming a first magnetic region extending over the first face of the first body, and forming a first coil extending over the second face of the first body and being magnetically coupled to the first magnetic via.
Abstract:
An integrated micro-electromechanical device includes a first body of semiconductor material having a first face and a second face opposite the first surface, with the first body including a buried cavity forming a diaphragm delimited between the buried cavity and the first face. The diaphragm is monolithic with the first body. At least one first magnetic via extends between the second face and the buried cavity of the first body. A first magnetic region extends over the first face of the first body. A first coil extends over the second face of the first body and is magnetically coupled to the first magnetic via.
Abstract:
An integrated electronic device, delimited by a first surface and by a second surface and including: a body made of semiconductor material, formed inside which is at least one optoelectronic component chosen between a detector and an emitter; and an optical path which is at least in part of a guided type and extends between the first surface and the second surface, the optical path traversing the body. The optoelectronic component is optically coupled, through the optical path, to a first portion of free space and a second portion of free space, which are arranged, respectively, above and underneath the first and second surfaces.
Abstract:
A pressure sensor device is to be positioned within a material where a mechanical parameter is measured. The pressure sensor device may include an IC having a ring oscillator with an inverter stage having first doped and second doped piezoresistor couples. Each piezoresistor couple may include two piezoresistors arranged orthogonal to one another with a same resistance value. Each piezoresistor couple may have first and second resistance values responsive to pressure. The IC may include an output interface coupled to the ring oscillator and configured to generate a pressure output signal based upon the first and second resistance values and indicative of pressure normal to the IC.
Abstract:
In one example, a method of compensating resistance in an integrated circuit includes providing a four terminal resistor in a semiconductor substrate. The resistor includes a first resistor and a second resistor coupled in series, a first terminal at a first end of the resistor, a second terminal at a second end of the resistor, a test terminal at a node connecting the first resistor and the second resistor, and a tuning terminal. The first resistor has a first conductivity type and the second resistor has a second conductivity type opposite to the first conductivity type. The first resistor includes a first portion extending along a first direction and a second portion extending along a second direction perpendicular to the first direction. The method further includes computing a voltage to be applied at the tuning terminal to compensate the difference between the resistance of the first and the second resistors.
Abstract:
An integrated circuit (IC) may include a semiconductor substrate, and a semiconductor resistor. The semiconductor resistor may include a well in the semiconductor substrate and having a first conductivity type, a first resistive region in the well having an L-shape and a second conductivity type, and a tuning element associated with the first resistive region. The IC may also include a resistance compensation circuit on the semiconductor substrate. The resistance compensation circuit may be configured to measure an initial resistance of the first resistive region, and generate a voltage at the tuning element to tune an operating resistance of the first resistive region based upon the measured initial resistance.
Abstract:
An integrated electronic device, delimited by a first surface and by a second surface and including: a body made of semiconductor material, formed inside which is at least one optoelectronic component chosen between a detector and an emitter; and an optical path which is at least in part of a guided type and extends between the first surface and the second surface, the optical path traversing the body. The optoelectronic component is optically coupled, through the optical path, to a first portion of free space and a second portion of free space, which are arranged, respectively, above and underneath the first and second surfaces.