摘要:
A microparticle sorting apparatus includes a detection unit which detects microparticles flowing through a flow path; an imaging device which images a droplet containing the microparticles which is discharged from an orifice provided on an edge portion of the flow path; a charge unit which applies a charge to the droplets; and a control unit which determines a delay time as from a time that the microparticles are detected by the detection unit to the time at which the sum of intensity of an image region imaged by the imaging device reaches a maximum, making it possible for the charge unit to apply a charge to the microparticles once the delay time has lapsed after the microparticles are detected by the detection unit.
摘要:
A flow cytometer includes apparatus for evaluating a trajectory of an ejected stream that carries micro-particles. The stream may be ejected from a micro-orifice of a micro-fluidic chip. The apparatus includes an imaging device and at least one processor configured to evaluate a trajectory of the ejected stream in at least two directions, e.g., a focusing direction and a direction transverse to the focusing direction. Based upon a detected trajectory, the system may execute an alarm function if the trajectory indicates an abnormal condition, or may move sample collection containers to accommodate for measured deviations in the trajectory of the ejected stream.
摘要:
Described are microparticle fractionating apparatus and methods of fractionating microparticles. Multiple electrodes may be used to charge droplets when separating and collecting microparticles based on a result analyzed by an optical methodologies. A first electrode may be used to charge a sample fluid, and a second electrode used to apply additional charge near a droplet break-off point.
摘要:
A microparticle sorting apparatus includes a detection unit which detects microparticles flowing through a flow path; an imaging device which images a droplet containing the microparticles which is discharged from an orifice provided on an edge portion of the flow path; a charge unit which applies a charge to the droplets; and a control unit which determines a delay time as from a time that the microparticles are detected by the detection unit to the time at which the sum of intensity of an image region imaged by the imaging device reaches a maximum, making it possible for the charge unit to apply a charge to the microparticles once the delay time has lapsed after the microparticles are detected by the detection unit.
摘要:
A microparticle sorting apparatus includes a detection unit which detects microparticles flowing through a flow path; an imaging device which images a droplet containing the microparticles which is discharged from an orifice provided on an edge portion of the flow path; a charge unit which applies a charge to the droplets; and a control unit which determines a delay time as from a time that the microparticles are detected by the detection unit to the time at which a number of bright spots in a standard region, which is set beforehand, of image information imaged by the imaging device reaches the maximum, making it possible for the charge unit to apply a charge to the microparticles once the delay time has lapsed after the microparticles are detected by the detection unit.
摘要:
Described are microparticle fractionating apparatus and methods of fractionating microparticles. Multiple electrodes may be used to charge droplets when separating and collecting microparticles based on a result analyzed by an optical methodologies. A first electrode may be used to charge a sample fluid, and a second electrode used to apply additional charge near a droplet break-off point.
摘要:
A flow cytometer includes apparatus for evaluating a trajectory of an ejected stream that carries micro-particles. The stream may be ejected from a micro-orifice of a micro-fluidic chip. The apparatus includes an imaging device and at least one processor configured to evaluate a trajectory of the ejected stream in at least two directions, e.g., a focusing direction and a direction transverse to the focusing direction. Based upon a detected trajectory, the system may execute an alarm function if the trajectory indicates an abnormal condition, or may move sample collection containers to accommodate for measured deviations in the trajectory of the ejected stream.
摘要:
Disclosed herein is a display device, including: a substrate; a circuit part configured to include a drive element; a planarization insulating layer; an electrically-conductive layer including a plurality of first electrodes and an auxiliary interconnect; an aperture-defining insulating layer configured to insulate the plurality of first electrodes from each other and have an aperture through which part of the first electrode is exposed; a plurality of light emitting elements; and a separator configured to be formed by removing the planarization insulating layer at a position between a display area, in which the plurality of light emitting elements connected to the drive element are disposed, and a peripheral area which is surrounding the display area. A method of manufacturing a display device is also provided.
摘要:
A microparticle sorting device that automatically and accurately adjusts the positions of a fluid stream and a collection container is provided.The microparticle sorting device including a pair of deflecting plates that face each other with a passage area of a fluid stream therebetween, a camera that captures the image of the fluid stream, and a fluid stream detection light source that emits light parallel to a direction in which the deflecting plates face each other and that is movable in a direction perpendicular to the fluid stream and the light is provided. In the microparticle sorting device, the collection container that receives the fluid stream is mounted so as to be movable in the direction perpendicular to the fluid stream and the light.
摘要:
Disclosed herein is a display device, including: a substrate; a circuit part configured to include a drive element; a planarization insulating layer; an electrically-conductive layer including a plurality of first electrodes and an auxiliary interconnect; an aperture-defining insulating layer configured to insulate the plurality of first electrodes from each other and have an aperture through which part of the first electrode is exposed; a plurality of light emitting elements; and a separator configured to be formed by removing the planarization insulating layer at a position between a display area, in which the plurality of light emitting elements connected to the drive element are disposed, and a peripheral area which is surrounding the display area. A method of manufacturing a display device is also provided.