Abstract:
Provided is an actuator (300) including: a reduction gear (320) that reduces, by a certain reduction ratio, a rotational velocity of an input shaft joined to a rotary shaft of a motor (360), and transmits the reduced rotational velocity to an output shaft (350); a first absolute angle encoder (330) that detects a rotational angle of the input shaft; and a second absolute angle encoder (340) that detects a rotational angle of the output shaft.
Abstract:
The present technology relates to a control device, a control method, and a program that allow notification of an abnormality occurring in a robot to be given to a user in an easy-to-check manner. A control device according to one aspect of the present technology includes: an abnormality detection unit that detects an abnormality that has occurred in a predetermined part of a robot; and an attitude control unit that controls an attitude of the robot so that the predetermined part in which the abnormality has occurred is within the angle of view of a camera. The present technology can be applied to a robot capable of making autonomous motions.
Abstract:
A robot (1) includes: a main body (10) including a hollow portion (110) that is a hollow space penetrating the main body (10) in an up-down direction, the main body (10) being configured to lift and support a support object (30) inserted in the hollow portion (110) by moving in the up-down direction; and a movable member (200) configured to move the main body (10) at least in the up-down direction by operating a leg (20).
Abstract:
There is provided is a robot arm apparatus including an arm unit made up of a plurality of links joined to each other by one or a plurality of a joint unit, the arm unit being connectable to an imaging unit; and a drive control unit that controls driving of the arm unit by causing each joint unit to be driven cooperatively. The drive control unit uses relative position information of a reference position with respect to the arm unit, the relative position information being based on a state of the arm unit and distance information about a distance between the imaging unit and the reference position, to control the driving of the arm unit in a manner that the reference position is positioned on an optical axis of the imaging unit.
Abstract:
Provided is an image processing device including: an image processing unit that generates image data for output from a captured image of an inside of a body cavity of a patient photographed by an endoscope. The image processing unit generates the image data in a manner that, when a lens barrel of the endoscope is moved in an optical axis direction of an objective lens during photographing, a display range in the captured image that is a range expressed in a display image displayed on a display device does not change, during the movement and after the movement, from a display range before the movement.
Abstract:
[Object] To calibrate an internal model more efficiently and more precisely. [Solution] Provided is a robot arm apparatus including: an arm unit made up of a plurality of links joined by one or a plurality of a joint unit, the arm unit being connectable to an imaging unit. An internal model including at least geometric information about the arm unit and focus position information about the imaging unit is updated using internal model information acquired in a state in which the imaging unit is pointed at a reference point in real space.
Abstract:
[Problem] It becomes possible to switch the operation controlling entity while maintaining continuity in the tasks. [Solution] A control device includes a driving control unit that drives a robot device based on one of a first-type driving instruction and a second-type driving instruction, at least one of which is sent from a distant location from the robot device; and a transition control unit that switches a driving instruction for driving the robot device from the first-type driving instruction to the second-type driving instruction. The transition control unit switches the driving instruction from the first-type driving instruction to the second-type driving instruction via a transition driving instruction generated based on the first-type driving instruction and the second-type driving instruction.
Abstract:
To accurately predict a sensor value even in the case where external force is received. A control apparatus according to the present disclosure includes: a prediction section (260) configured to, in an actuator including a torque sensor that detects torque generated at a driving shaft, and an encoder that detects a rotational angle of the driving shaft, predict a detection value of the encoder on a basis of a detection value of the torque sensor, or predict the detection value of the torque sensor on a basis of the detection value of the encoder; and a trouble determination section (266) configured to compare a prediction value predicted by the prediction section with an actually measured value of the torque sensor or the encoder to perform trouble determination on the torque sensor or the encoder.
Abstract:
[Object] To enable further improvement in user convenience. [Solution] Provided is a robot arm apparatus including: an arm unit made up of a plurality of links joined to each other by one or a plurality of a joint unit, the arm unit being connectable to an imaging unit; and a drive control unit that controls driving of the arm unit by causing each joint unit to be driven cooperatively. The drive control unit uses relative position information of a reference position with respect to the arm unit, the relative position information being based on a state of the arm unit and distance information about a distance between the imaging unit and the reference position, to control the driving of the arm unit in a manner that the reference position is positioned on an optical axis of the imaging unit.
Abstract:
[Object] To detect a rotational angle accurately and also to drive more safely. [Solution] Provided is an actuator (300) including: a reduction gear (320) that reduces, by a certain reduction ratio, a rotational velocity of an input shaft joined to a rotary shaft of a motor (360), and transmits the reduced rotational velocity to an output shaft (350); a first absolute angle encoder (330) that detects a rotational angle of the input shaft; and a second absolute angle encoder (340) that detects a rotational angle of the output shaft.