摘要:
An image sensor includes a color filter on a substrate, first and second organic photodiodes on the color filter, and first and second capacitors connected to the first and second organic photodiodes, respectively. The color filter is spaced apart from a first surface of the substrate. Each of the first and second organic photodiodes face an upper surface of the color filter. The first capacitor includes a first conductive pattern and a first insulating space. The first conductive pattern extends through the substrate, and the first insulating spacer surrounds a sidewall of the first conductive pattern and has a first thickness. The second capacitor includes a second conductive pattern and a second insulating spacer. The second conductive pattern extends through the substrate, and the second insulating spacer surrounds a sidewall of the second conductive pattern and has a second thickness smaller than the first thickness.
摘要:
The Time-of-Flight (TOF) technique is combined with analog amplitude modulation within each pixel in an image sensor. The pixel may be a two-tap pixel or a one-tap pixel. Two photoelectron receiver circuits in the pixel receive respective analog modulating signals. The distribution of the received photoelectron charge between these two circuits is controlled by the difference (or ratio) of the two analog modulating voltages. The differential signals generated in this manner within the pixel are modulated in time domain for TOF measurement. Thus, the TOF information is added to the received light signal by the analog domain-based single-ended to differential converter inside the pixel itself. The TOF-based measurement of range and its resolution are controllable by changing the duration of modulation. An autonomous navigation system with these features may provide improved vision for drivers under difficult driving conditions like low light, fog, bad weather, or strong ambient light.
摘要:
In a method of operating a depth pixel included in a three-dimensional (3D) image sensor, a plurality of sampling values are obtained by sampling a reception light reflected by an object based on a transfer control signal having a first initial activation level. The depth pixel includes a photo detection region, a transfer gate and a floating diffusion region. The transfer control signal is applied to the transfer gate. A first final activation level of the transfer control signal is determined based on the plurality of sampling values and at least one reference value. A distance between the depth pixel and the object is calculated based on the reception light and the transfer control signal having the first final activation level.
摘要:
The inventive concepts relate to image sensors. The image sensor includes a substrate including a floating diffusion region and a pixel circuit, an interlayer insulating layer on the substrate, a contact node and a first electrode on the interlayer insulating layer, a dielectric layer on a top surface of the first electrode, a channel semiconductor pattern on the dielectric layer and connected to the contact node, and a photoelectric conversion layer on the channel semiconductor pattern. The channel semiconductor pattern includes a semiconductor material having an electron mobility that is higher than an electron mobility of the photoelectric conversion layer.
摘要:
A depth pixel includes a photo detection unit, an ambient light removal current source, a driving transistor and a select transistor. The photo detection unit is configured to generate a light current based on a received light reflected from a subject, the received light including an ambient light component. The ambient light removal current source configured to generate a compensation current indicating the ambient light component in response to a power supply and at least one compensation control signal. The driving transistor is configured to amplify an effective voltage corresponding to the light current and the compensation current. The select transistor configured to output the amplified effective voltage in response to a selection signal, the amplified effective voltage indicating a depth of the subject.
摘要:
An image sensor of reduced chip size includes a semiconductor substrate having an active pixel region in which a plurality of active pixels are disposed and a power delivery region in which a pad is disposed. A plurality of first transparent electrode layers is disposed over the semiconductor substrate, respectively corresponding to the plurality of active pixels. A second transparent electrode layer is integrally formed across the active pixels. An organic photoelectric layer is disposed between the plurality of first transparent electrode layers and the second transparent electrode layer. An interconnection layer is located at a level that is the same as or higher than an upper surface of the pad with respect to an upper main surface of the semiconductor substrate. The interconnection layer extends from the pad to the second transparent electrode layer, and includes a connector electrically connecting the pad and the second transparent electrode layer.
摘要:
An image sensor of reduced chip size includes a semiconductor substrate having an active pixel region in which a plurality of active pixels are disposed and a power delivery region in which a pad is disposed. A plurality of first transparent electrode layers is disposed over the semiconductor substrate, respectively corresponding to the plurality of active pixels. A second transparent electrode layer is integrally formed across the active pixels. An organic photoelectric layer is disposed between the plurality of first transparent electrode layers and the second transparent electrode layer. An interconnection layer is located at a level that is the same as or higher than an upper surface of the pad with respect to an upper main surface of the semiconductor substrate. The interconnection layer extends from the pad to the second transparent electrode layer, and includes a connector electrically connecting the pad and the second transparent electrode layer.
摘要:
A binary complementary metal-oxide-semiconductor (CMOS) image sensor includes a pixel array and a readout circuit. The pixel array includes at least one pixel having a plurality of sub-pixels. The readout circuit is configured to quantize a pixel signal output from the pixel using a reference signal. The pixel signal corresponds to sub-pixel signals output from sub-pixels, from among the plurality of sub-pixels, activated in response to incident light.
摘要:
An image sensor includes a first sensor pixel and a second sensor pixel that vertically overlap each other. The first sensor pixel includes a first signal generation circuit, and a first photoelectric converter that is connected to the first signal generation circuit and configured to generate first information from light having a first wavelength. The second sensor pixel includes a second signal generation circuit, and a second photoelectric converter that is connected to the second signal generation circuit and configured to generate second information from light having a second wavelength. A first horizontal surface area of the first photoelectric converter is different from a second horizontal surface area of the second photoelectric converter. An image sensor module includes the image sensor, a light source configured to emit light to a target object, and a dual band pass filter configured to selectively pass light reflected from the target object.
摘要:
The inventive concepts relate to image sensors. The image sensor includes a substrate including a floating diffusion region and a pixel circuit, an interlayer insulating layer on the substrate, a contact node and a first electrode on the interlayer insulating layer, a dielectric layer on a top surface of the first electrode, a channel semiconductor pattern on the dielectric layer and connected to the contact node, and a photoelectric conversion layer on the channel semiconductor pattern. The channel semiconductor pattern includes a semiconductor material having an electron mobility that is higher than an electron mobility of the photoelectric conversion layer.