Abstract:
An image processing device comprises an image sensor including unit groups comprising a reference group and a conversion group each including pixels and color filters, and is configured to generate image data using the pixels, and an image signal processor which is configured to calculate a hash of the image data, and to select a filter corresponding to the hash to perform filtering, wherein the image signal processor includes a pixel index converter which is configured to convert indexes of the pixels based on a positional relationship between the pixels, a pixel property converter which is configured to convert the properties of the pixels and to convert the hash before conversion, and a filter coefficient converter which is configured to convert filter coefficients of the pixels based on the respective converted pixel index and the respective converted pixel property.
Abstract:
An RGBW image sensor, a binning method in an image sensor, and a computer readable medium for performing the method are provided, and the binning method in an image sensor includes selecting one or more binning target pixels for each of a red pixel, a green pixel, a blue pixel, and a white pixel, constituting a pixel array of an RGBW image sensor with a uniform array pattern, generating binning pixel data for each of the red pixel, the green pixel, the blue pixel, and the white pixel, based on pieces of pixel data corresponding to the binning target pixel, and rearranging pixels, represented by the binning pixel data, to be equal to the entirety or a portion of the uniform array pattern and to be equally spaced apart from each other.
Abstract:
An image sensor includes a pixel array that includes a plurality of pixels, a first interface directly connected to an external gyro sensor and that receives gyro data output by the gyro sensor in response to motion, and a control logic that generates image data by exposing the plurality of pixels for a predetermined exposure period, generates valid data that correspond to the exposure period using the gyro data, and generates, based on the valid data, compensation information that represents a movement path of the motion.
Abstract:
A binary complementary metal-oxide-semiconductor (CMOS) image sensor includes a pixel array and a readout circuit. The pixel array includes at least one pixel having a plurality of sub-pixels. The readout circuit is configured to quantize a pixel signal output from the pixel using a reference signal. The pixel signal corresponds to sub-pixel signals output from sub-pixels, from among the plurality of sub-pixels, activated in response to incident light.
Abstract:
An image sensor includes a pixel array that includes a plurality of pixels, a first interface directly connected to an external gyro sensor and that receives gyro data output by the gyro sensor in response to motion, and a control logic that generates image data by exposing the plurality of pixels for a predetermined exposure period, generates valid data that correspond to the exposure period using the gyro data, and generates, based on the valid data, compensation information that represents a movement path of the motion.
Abstract:
An autofocus method includes receiving a left image having a first blurriness value and a right image having a second blurriness value, filtering the left image so that the first blurriness value becomes the same as the second blurriness value, and generating a control signal for controlling the lens module based on a difference between a third blurriness value of a filtered left image and the second blurriness value.
Abstract:
A method of calculating, using a depth sensor, a distance excluding an ambiguity distance including outputting a modulated light signal output from a light source to an object, receiving the modulated light signal reflected by the object, calculating a distance between the light source and the object using the reflected modulated light signal input to photo gates in conjunction with demodulation signals supplied to the photo gates, the calculating including calculating, using the modulated light signal, at least one distance farther than a maximum measurable distance, and setting the at least one distance to be equal to the maximum measurable distance may be provided. A range of the distance farther than the maximum measurable distance can be determined according to a duty ratio of the modulated light signal.
Abstract:
An image sensor according to an example embodiment concepts includes a pixel array including pixels, and each of the pixels includes photoelectric conversion elements. The photoelectric conversion elements independently operating to detect a phase difference. The image sensor further includes a control circuit configured to independently control exposure times of each of the photoelectric conversion elements included in each of the pixels.
Abstract:
An image sensor chip includes a first wafer and a second wafer. The first wafer includes an image sensor having a plurality of sub-pixels, each of which is configured to detect at least one photon and output a sub-pixel signal according to a result of the detection. The image processor is configured to process sub-pixel signals for each sub-pixel and generate image data. The first wafer and the second wafer are formed in a wafer stack structure.