Abstract:
An analog-to-digital conversion circuit includes; a first analog-to-digital converter (ADC), a second ADC and a third ADC collectively configured to perform conversion operations according to a time-interleaving technique, and a timing calibration circuit configured to calculate correlation values and determine differences between the correlation values using first samples generated by the first ADC, second samples generated by the second ADC, and third samples generated by the third ADC during sampling periods, wherein the timing calibration circuit is further configured to control a phase of a clock signal applied to the second ADC in response to a change in absolute value related to the differences generated during the sampling periods.
Abstract:
A touch detection device and a method of detecting a touch employ: a current-to-voltage converter configured to convert a reception signal received from a touch panel into a sensing signal, and further configured to be periodically reset for a first time period in response to a reset signal; a digital-to-analog converter configured to convert an analog signal based on the sensing signal into a first digital output signal, and a controller configured to generate a second digital output signal based on the first digital output signal by performing data interpolation on a first portion of the first digital output signal corresponding to the first time period.
Abstract:
A touch sensing device includes a touch panel and a receiving unit. The touch panel generates first to third receiving signals corresponding to a touch occurring at the touch sensing device. The receiving unit is connected to the touch panel through first to third receiving lines to receive the first to third receiving signals through the first to third receiving lines, respectively. The receiving unit includes a differential signal generator for excluding a first common signal common to the first and second receiving signals from each of the first and second receiving signals to generate first differential signals when a first touch sensing operation is performed. The differential signal generator excludes a second common signal common to the second and third receiving signals from each of the second and third receiving signals to generate second differential signals when a second touch sensing operation is performed.
Abstract:
An antenna device includes an antenna array including a plurality of first antenna elements, arranged in a 2-by-2 array, a plurality of second antenna elements arranged in a 2-by-2 array, a first switching circuit, a second switching circuit connected to the first switching circuit and the first antenna elements, a third switching circuit connected to the first switching circuit and the second antenna elements, and a processor connected to the switching circuits. The processor is configured to control at least one of the switching circuits to operate in a single mode, among the plurality of modes, based on a single beam pattern among a plurality of predetermined beam patterns and to feed power to the antenna array through the first switching circuit, the second switching circuit, and the third switching circuit, to transmit a signal having the beam pattern.
Abstract:
An analog-to-digital conversion circuit includes analog-to-digital converters (ADCs) including a target analog-to-digital converter (ADC) providing second data samples, a first adjacent ADC providing first data samples, and a second adjacent ADC providing third data samples. The ADCs perform an analog-to-digital conversion using a time-interleaving approach in response to clock signals having different phases and including a reference clock signal. A timing calibration circuit includes a relative time skew generator generating a relative time skew and an absolute time skew generator generate an absolute time skew. A clock generator adjusts at least one phase of the clock signals based on the absolute time skew.
Abstract:
An analog-to-digital converting apparatus includes a first stage converter which performs a first analog-to-digital conversion on an input analog signal during a first stage period, a second stage converter which receives a first residue from the first stage converter amplified by a first gain and which performs a second analog-to-digital conversion during a second stage period, and a recombination logic circuit which combines a first output signal from the first stage converter and a second output signal from the second stage converter into an output digital signal that corresponds to the input analog signal. The second stage converter generates a second stage feedback signal obtained by amplifying the second output signal by the first gain during a first sub-cycle in the second stage period, and generates a second output signal of a second sub-cycle subsequent to the first sub-cycle based on the second stage feedback signal.
Abstract:
An analog-digital converter has multiple feedback, and includes: a capacitor digital-analog converter including a plurality of switches driven by a digital code, and a plurality of capacitors respectively connected to the plurality of switches, wherein the capacitor digital-analog converter is configured to generate a residue voltage based on an analog input voltage and a voltage corresponding to the digital code; first and second feedback capacitors each storing the residue voltage; an integrator configured to generate an integral signal by integrating the residue voltage; first and second comparators respectively configured to generate first and second comparison signals from the integral signal; and a digital logic circuitry configured to receive the first and second comparison signals, and generate a digital output signal from the first and second comparison signals, the digital output signal corresponding to the digital code during a successive approximation register (SAR) analog-digital conversion interval, and the digital output signal corresponding to an average of first and second digital control signals during a delta sigma analog-digital conversion interval, wherein the first and second comparison signals are respectively fed back to the first and second feedback capacitors. The analog-digital converter may be included in various electronic devices, including communication devices.
Abstract:
Provided is a circuit for generating a reference voltage. The circuit includes a band gap circuit generating a first current having a size that increases in proportion to an absolute temperature and a second current having a size that decreases in proportion to the absolute temperature, and outputting a reference voltage based on the first current and the second current; a mirroring circuit mirroring a sum of the first current and the second current and outputting a mirroring voltage that is in proportion to the sum of the first current and the second current; and a start-up circuit receiving the mirroring voltage from the mirroring circuit and providing a driving current for generating the first current or the second current to the band gap circuit until a time when the first current starts to be generated in the band gap circuit.