Abstract:
Provided are a method and apparatus for reporting power headroom in a mobile communication system supporting carrier aggregation. A user equipment (UE) determines the maximum transmit power for each carrier and the maximum UE transmit power, and sends a power headroom report that contains power headroom for each carrier computed based on the maximum transmit power for the carrier and the maximum UE transmit power to a corresponding base station (ENB).
Abstract:
According to one embodiment of the present disclosure, the method by means of which a mobility management entity (MME) determines the communication mode of a terminal in a communication system includes the steps of: receiving, from the terminal, an access request including information on the position of the terminal; transmitting a message to a home subscriber server (HSS) on the basis of the received access request; receiving, from the HSS, specific position information for setting a first mode; comparing the information on the position of the terminal with the specific position information; and determining the communication mode of the terminal according to the result of the comparison. According to the present disclosure, the frequent transmission of small amounts of data can be supported in an efficient manner.
Abstract:
A method and base station in a wireless communication system are provided. The method includes transmitting, to a terminal, system information including information associated with a sub-frame configuration of multimedia broadcast multicast service single frequency network (MBSFN) sub-frames, identifying whether the transmission mode of the terminal is a first transmission mode or a second transmission mode, transmitting, to the terminal, dedicated message including configuration information of the identified transmission mode of the terminal, transmitting, to the terminal, control information in a physical downlink control channel (PDCCH) and data in a physical downlink shared channel (PDSCH) in a first sub-frame of the MBSFN sub-frames, if the terminal is configured in the first transmission mode, and transmitting, to the terminal, the control information in the PDCCH and the data in the PDSCH in a second sub-frame of a non-MBSFN sub-frames, if the terminal is configured in the second transmission mode.
Abstract:
Disclosed are a method and an apparatus for transmitting and receiving measurement information in a mobile communication system. A terminal transmits a connection request message to a network and reports to the network, connection failure-related measurement information when a registered public land mobile network (RPLMN) included in a connection setup message received from the network corresponds to a pre-stored and selected public land mobile network (PLMN) and the connection failure-related measurement information stored with the selected PLMN is available.
Abstract:
The present invention involves defining the operation of a terminal for determining which time alignment timer is to be applied to a certain condition when specific time alignment timers operate for each carrier-wave group in the event a wireless communication system uses a carrier aggregation technique. According to the present invention, a terminal may perform communication without malfunctions using a time alignment timer suitable for a certain condition. In detail, a method for a terminal to operate a time alignment timer according to the present invention comprises the steps of: receiving, from a base station, a message including a timing advance command and an index on a timing advance group (TAG); and operating the time alignment timer for the TAG, wherein the index has a value of 00 when the TAG includes a first cell. In the meantime, a method for a terminal to operate a time alignment timer according to the present invention comprises the steps of: operating a first time alignment timer for a first timing advance group (TAG) including a first cell; operating a second time alignment timer upon receipt of a timing advance command for a second TAG that does not include the first cell; and, if the first time alignment timer has expired, deeming the second time alignment timer to also be expired. In addition, a method for a base station to control a time alignment timer according to the present invention comprises the steps of: determining whether or not an uplink timing of a terminal needs correction; and transmitting a message including a timing advance command and an index on a timing advance group (TAG), wherein the index has a value of 00 when the TAG includes a first cell.
Abstract:
The present invention involves defining the operation of a terminal for determining which time alignment timer is to be applied to a certain condition when specific time alignment timers operate for each carrier-wave group in the event a wireless communication system uses a carrier aggregation technique. According to the present invention, a terminal may perform communication without malfunctions using a time alignment timer suitable for a certain condition A method for a terminal to operate a time alignment timer according to the present invention comprises the steps of: operating a first time alignment timer for a first timing advance group (TAG) including a first cell; operating a second time alignment timer upon receipt of a timing advance command for a second TAG that does not include the first cell; and, if the first time alignment timer has expired, deeming the second time alignment timer to also be expired.
Abstract:
The present invention relates to a method and apparatus for performing a discontinuous reception (DRX) operation while transceiving data using a plurality of carriers in a mobile communication system. The communication method for a terminal according to one embodiment of the present invention comprises receiving a control message, including setting information of a secondary serving cell (SCell) to be added and discontinuous reception setting information, from a primary serving cell (PCell) and applying, if the control message includes an indicator indicating that the first base station to which the SCell to be added belongs and the second base station to which the PCell belongs are different from each other, the DRX setting information to the serving cell of a first base station. According to one embodiment of the present invention, a discontinuous reception (DRX) operation is applied upon the occurrence of inter-base-station carrier aggregation, thus reducing battery consumption.
Abstract:
Provided are a method and apparatus for dormant mode operation in a user equipment. During dormant mode, data transmission between the user equipment and network is suspended. For dormant mode operation, the user equipment determines whether to enter dormant mode, and sends, upon determining to enter dormant mode, a dormant mode entry message containing dormant mode time information to the network.
Abstract:
A method and base station in a wireless communication system are provided. The method includes transmitting, to a terminal, system information including information associated with a sub-frame configuration of multimedia broadcast multicast service single frequency network (MBSFN) sub-frames, determining a transmission mode of the terminal, the transmission mode indicating one of a first transmission mode and a second transmission mode, transmitting, to the terminal, configuration information of the determined transmission mode of the terminal, transmitting, to the terminal, control information in a physical downlink control channel (PDCCH) in a first sub-frame of the MBSFN sub-frames and a second sub-frame of non-MBSFN sub-frames for the terminal, if the terminal is configured in the first transmission mode, and transmitting, to the terminal, the control information in the PDCCH in the second sub-frame of the non-MBSFN sub-frames, if the terminal is configured in the second transmission mode.
Abstract:
A method and base station in a wireless communication system are provided. The method includes transmitting, to a terminal, system information including information associated with a sub-frame configuration of multimedia broadcast multicast service single frequency network (MBSFN) sub-frames, identifying whether the transmission mode of the terminal is a first transmission mode or a second transmission mode, transmitting, to the terminal, dedicated message including configuration information of the identified transmission mode of the terminal, transmitting, to the terminal, control information in a physical downlink control channel (PDCCH) and data in a physical downlink shared channel (PDSCH) in a first sub-frame of the MBSFN sub-frames, if the terminal is configured in the first transmission mode, and transmitting, to the terminal, the control information in the PDCCH and the data in the PDSCH in a second sub-frame of a non-MBSFN sub-frames, if the terminal is configured in the second transmission mode.