Abstract:
Methods and apparatuses are provided for receiving control information by a terminal. A control channel message is received on a control channel. Control information comprising a transmission rank and precoding matrix information is extracted from the control channel message if a common pilot is used for data demodulation. The control information comprising the transmission rank and information about a dedicated pilot is extracted from the control channel message if the dedicated pilot is used for the data demodulation.
Abstract:
Methods and apparatuses are described for wireless communication supporting carrier aggregation. The method includes monitoring, by a user equipment (UE), a downlink control channel in a first search space to receive first control information in the first search space; monitoring, by the UE, a downlink control channel in a second search space to receive second control information in the second search space; and receiving, by the UE, data on a first carrier based on the received first control information or on a second carrier based on the received second control information.
Abstract:
A base station and mobile station communicate using a multiple input multiple output (MIMO) communication. The base station includes a two dimensional (2D) antenna array comprising a number N of antenna elements configured in a 2D grid. The 2D antenna array is configured to communicate with at least one subscriber station. The base station also includes a controller configured to transmit N channel-state-information reference-signal (CSI-RS) antenna ports (APs) associated with each of the N antenna elements. The subscriber station includes an antenna array configured to communicate with at least one base station. The subscriber station also includes processing circuitry configured receives physical downlink shared channels (PDSCHs) from a 2D active antenna array at the at least one base station. The 2D active antenna array includes a number N antenna elements. The processing circuitry further configured to estimate a full CSI associated with the N antenna elements.
Abstract:
A Channel Status Information (CSI) transmission method and apparatus of a terminal are provided for use in a wireless communication system. In the wireless communication system supporting carrier aggregation, the terminal transmits the CSIs of component carriers without conflict of their transmission time points, resulting in an improvement of system performance. In a case where the transmission time points are determined to overlap unavoidably, the terminal transmits the CSI as compressed.
Abstract:
A method and base station in a wireless communication system are provided. The method includes transmitting, to a terminal, system information including information associated with a sub-frame configuration of multimedia broadcast multicast service single frequency network (MBSFN) sub-frames, identifying whether the transmission mode of the terminal is a first transmission mode or a second transmission mode, transmitting, to the terminal, dedicated message including configuration information of the identified transmission mode of the terminal, transmitting, to the terminal, control information in a physical downlink control channel (PDCCH) and data in a physical downlink shared channel (PDSCH) in a first sub-frame of the MBSFN sub-frames, if the terminal is configured in the first transmission mode, and transmitting, to the terminal, the control information in the PDCCH and the data in the PDSCH in a second sub-frame of a non-MBSFN sub-frames, if the terminal is configured in the second transmission mode.
Abstract:
A method for transmitting a CSI feedback report to a serving cell comprises for time division duplex, configuring at least one periodic CSI process with a CSI reference source defined by a single downlink subframe n−nCQI_ref, wherein nCQI_ref is a smallest value greater than or equal to a positive integer nCQI_ref_min, such that it corresponds to a valid downlink subframe, wherein nCQI_ref_min varies based on a number of at least one periodic CSI process. A method for CSI feedback reporting to a base station comprises configuring not to accommodate, by a user equipment, the one or more aperiodic CSI requests arrived from a serving cell except a CSI request of CSI processes with lower indexes for each serving cell, wherein a number of the one or more CSI processes with a lower index (es) is determined based on a number of pending CSI reports.
Abstract:
Methods and apparatuses are provided for receiving control information by a terminal. A control channel message is received on a control channel. Control information is extracted from the control channel message. The control information includes a transmission rank and precoding matrix information if a common pilot is used for data demodulation. The control information includes the transmission rank and information about a dedicated pilot if the dedicated pilot is used for the data demodulation.
Abstract:
A method apparatus and system for efficiently transmitting and receiving channels are provided in a wireless communication system based on Orthogonal Frequency Division Multiplexing (OFDM). A multiplexing scheme differs according to a channel when a transmitter transmits a packet data channel, a common control channel and a control channel designated for a particular user. Uncoded 1-bit information is broadly dispersed in frequency and time domains using multiplexing technology for maximizing diversity in a channel for transmitting information of at least one bit to a particular user like an acknowledgement (ACK) channel. The transmitter converts a sequence obtained by multiplexing multiple bits to be transmitted to a plurality of users to parallel signals, and broadly disperses the parallel signals in the time and frequency domains. When the uncoded 1-bit information is transmitted, reception reliability is improved because channel coding and transmission are efficiently performed using a small amount of resources.
Abstract:
A method and base station in a wireless communication system are provided. The method includes transmitting, to a terminal, system information including information associated with a sub-frame configuration of multimedia broadcast multicast service single frequency network (MBSFN) sub-frames, determining a transmission mode of the terminal, the transmission mode indicating one of a first transmission mode and a second transmission mode, transmitting, to the terminal, configuration information of the determined transmission mode of the terminal, transmitting, to the terminal, control information in a physical downlink control channel (PDCCH) in a first sub-frame of the MBSFN sub-frames and a second sub-frame of non-MBSFN sub-frames for the terminal, if the terminal is configured in the first transmission mode, and transmitting, to the terminal, the control information in the PDCCH in the second sub-frame of the non-MBSFN sub-frames, if the terminal is configured in the second transmission mode.
Abstract:
A method and base station in a wireless communication system are provided. The method includes transmitting, to a terminal, system information including information associated with a sub-frame configuration of multimedia broadcast multicast service single frequency network (MBSFN) sub-frames, identifying whether the transmission mode of the terminal is a first transmission mode or a second transmission mode, transmitting, to the terminal, dedicated message including configuration information of the identified transmission mode of the terminal, transmitting, to the terminal, control information in a physical downlink control channel (PDCCH) and data in a physical downlink shared channel (PDSCH) in a first sub-frame of the MBSFN sub-frames, if the terminal is configured in the first transmission mode, and transmitting, to the terminal, the control information in the PDCCH and the data in the PDSCH in a second sub-frame of a non-MBSFN sub-frames, if the terminal is configured in the second transmission mode.